There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ...There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.展开更多
Supercritical adsorption equilibrium has a significant role in defining supercritical adsorption behavior. In this paper, the adsorption equilibrium of citric acid from supercritical CO2/ethanol on a cyano column was ...Supercritical adsorption equilibrium has a significant role in defining supercritical adsorption behavior. In this paper, the adsorption equilibrium of citric acid from supercritical CO2/ethanol on a cyano column was systematically investigated with the elution by characteristic point method. Equilibrium loading was obtained at 313.15 K and 321.15 K with supercritical CO2/ethanol densities varying from 0.7068 g·cm-3to 0.8019 g·cm-3. The experimental results showed that the adsorption capacity of citric acid decreased with increasing temperature and increasing density of the supercritical CO2/ethanol mobile phase. The adsorption equilibrium data were fitted well by the Quadratic Hill isotherm model and the isotherms showed anti-Langmuir behavior. The monolayer saturation adsorption capacity of citric acid is in the range of 44.54 mg·cm-3to 64.66 mg·cm-3with an average value of 56.86 mg·cm-3.展开更多
Human health has been potentially threatened by cadmium (Cd) contained in sewage irrigation water.Previous studies of Cd transport in soils were mainly conducted using small soil cores with pH values less than 6.The o...Human health has been potentially threatened by cadmium (Cd) contained in sewage irrigation water.Previous studies of Cd transport in soils were mainly conducted using small soil cores with pH values less than 6.The objectives of this study were to determine the parameters of the convection-dispersion equation (CDE) for Cd transport in relatively larger columns with neutral and alkaline soils,and to investigate the parameters' variability with depth.The soil columns were 50 cm in length and 12.5 cm in diameter.Ceramic suction lysimeters were buried at depths of 2.5,7.5,17.5,27.5,and 37.5 cm to abstract soil solution.Cd concentration in the soil solution samples were subsequently analyzed to obtain breakthrough curves (BTCs).Equilibrium and nonequilibrium models in CXTFIT program were used to estimate parameters of the CDE.The results suggested that both equilibrium and non-equilibrium models performed well in modeling Cd transport.The hydrodynamic dispersion coefficient (D) ranged from 0.18 to 10.70 cm 2 h 1,showing large differences among different depths.The retardation factor (R d) ranged from 25.4 to 54.7 and the standard deviation of R d value was lower than 30% of the mean value.Precipitation coefficient (R p) decreased consistently with increasing depth,varying from 1.000 × 10 10 to 0.661 h 1.Sensitivity tests showed that D was less sensitive than R d.These results would be helpful in understanding the transport and retention of Cd in non-acidic soils.展开更多
Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-di...Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells.A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains.Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation,and their stabilities are determined via the modified sorting method.The effects of excitations on the steady-state responses are analyzed.The results reveal a crucial role played by the phase difference in the structural response,and the phase difference can effectively control the amplitude of vibration.展开更多
基金supported by the National Programs for Fundamental Research and Development (No. 2013CB227900)the National Natural Science Foundation of China (Nos. 51204166, 51174195 and 51474209)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘There are two states for the coal-mass on the goal-side which is in stress equilibrium: the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non- ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana- lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goal-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coeffident of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width ofa longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit eauilibrium zone is more oractical.
文摘Supercritical adsorption equilibrium has a significant role in defining supercritical adsorption behavior. In this paper, the adsorption equilibrium of citric acid from supercritical CO2/ethanol on a cyano column was systematically investigated with the elution by characteristic point method. Equilibrium loading was obtained at 313.15 K and 321.15 K with supercritical CO2/ethanol densities varying from 0.7068 g·cm-3to 0.8019 g·cm-3. The experimental results showed that the adsorption capacity of citric acid decreased with increasing temperature and increasing density of the supercritical CO2/ethanol mobile phase. The adsorption equilibrium data were fitted well by the Quadratic Hill isotherm model and the isotherms showed anti-Langmuir behavior. The monolayer saturation adsorption capacity of citric acid is in the range of 44.54 mg·cm-3to 64.66 mg·cm-3with an average value of 56.86 mg·cm-3.
基金Supported by the National Natural Science Foundation of China (No. 51179166)the National Basic Research Program(973 Program) of China (No. 2006CB403406)
文摘Human health has been potentially threatened by cadmium (Cd) contained in sewage irrigation water.Previous studies of Cd transport in soils were mainly conducted using small soil cores with pH values less than 6.The objectives of this study were to determine the parameters of the convection-dispersion equation (CDE) for Cd transport in relatively larger columns with neutral and alkaline soils,and to investigate the parameters' variability with depth.The soil columns were 50 cm in length and 12.5 cm in diameter.Ceramic suction lysimeters were buried at depths of 2.5,7.5,17.5,27.5,and 37.5 cm to abstract soil solution.Cd concentration in the soil solution samples were subsequently analyzed to obtain breakthrough curves (BTCs).Equilibrium and nonequilibrium models in CXTFIT program were used to estimate parameters of the CDE.The results suggested that both equilibrium and non-equilibrium models performed well in modeling Cd transport.The hydrodynamic dispersion coefficient (D) ranged from 0.18 to 10.70 cm 2 h 1,showing large differences among different depths.The retardation factor (R d) ranged from 25.4 to 54.7 and the standard deviation of R d value was lower than 30% of the mean value.Precipitation coefficient (R p) decreased consistently with increasing depth,varying from 1.000 × 10 10 to 0.661 h 1.Sensitivity tests showed that D was less sensitive than R d.These results would be helpful in understanding the transport and retention of Cd in non-acidic soils.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11672069,11872145,11872159,12172086,and 12101106).
文摘Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells.A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains.Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation,and their stabilities are determined via the modified sorting method.The effects of excitations on the steady-state responses are analyzed.The results reveal a crucial role played by the phase difference in the structural response,and the phase difference can effectively control the amplitude of vibration.