In our trials, from 2007 to 2008, of mass production of seedlings of Hizikiafusiformis using synchronization techniques, problems of a "dark thalli" phenomenon and epiphytes contamination severely threatened the hea...In our trials, from 2007 to 2008, of mass production of seedlings of Hizikiafusiformis using synchronization techniques, problems of a "dark thalli" phenomenon and epiphytes contamination severely threatened the health of juvenile seedlings. In this investigation, we optimized conditions for improving the growth of juvenile seedlings. Seven string collectors were seeded with zygotes and a series of experiments were conducted including direct exposure to solar irradiance, co-culture with Ulva spp. and treatment with sodium hypochlorite. It was found that direct exposure to solar irradiance (maximum: 1 740 μmol photons/(m2.s)) for 2 h per day could efficiently enhance the growth of young seedlings and simultaneously inhibit the growth of epiphytic algae. In this treatment, 50-day old seedlings could reach an average of 0.44 cm in length and possess up to nine leaflets. However, a single treatment with 18-mmol/L sodium hypochlorite for 10 rain severely harmed 15-day old seedlings. In comparison, weekly treatment with 2.2-mmol/L sodium hypochlorite for 10 rain brought no apparent harm to seedlings and eliminated epiphytic algae efficiently. However, this treatment significantly increased the detachment rate of seedlings, Inoculating Ulva spp. onto the collector caused a dramatic decrease in the number of seedlings. However, the growth of the remaining seedlings appeared unhampered. All collectors except the control were daily sprayed with a high pressure water jet from the 84 day post fertilization. From the first day to 50th day, no "dark thallus" was observed on any of the seven collectors. We believe that well-timed daily exposure to solar irradiance would favor H. fusiformis in its early growing stages.展开更多
[Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of dif...[Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of different combinations of Na/Ca ratio in saline soils on the early growth of sweet sorghum plants. [Method] A germi- nation test and a greenhouse pot experiment were conducted to assess the interac- tive effects of calcium addition to culture medium on the germination and seedling growth of sweet sorghum (Sorghum saccharatum Moench) in saline soils with a range of NaYCa ratios. In the germination test, seeds were treated with different combinations of five calcium levels [0, 5, 10, 15, and 20 mmol/L Ca(NO3)2] and five salinity levels (0, 50, 100, 150, and 200 mmol/L NaCI). In the greenhouse experi- ment, seeds were sown in potting soils containing 3 salinity levels (2.3, 4.7 and 7.0 dS/m) and three Na:Ca ratios (10:0, 10:1, and 5:1). [Result] In the germination test, Ca addition at 5 mmol/L promoted germination by 5.5%, 9.9%, and 17.0% at the 3.4, 6.7 and 10.1 dS/m salinity levels. The higher Ca level (10 mmol/L) also in- creased germination by 9.1% and 7.8% at the 3.4 and 6.7 dS/m salinity levels. Then even higher Ca addition at 15 and 20 mmol/L appeared to promote germina- tion when culture media had high salinity (10.1 and 13.4 dS/m). In the greenhouse pot experiment, saline soil amended with supplemental Ca at the 2.3 and 4.7 dS/m salinity levels significantly promoted early seedling growth, with an increase of 6.8% to 28.2% in plant height and 14.3% to 67.9% in whole plant weight. From 28 to 42 d after seeding, the relative growth of seedling was increased by Ca addition, with a reduction of 49.5% to 66.0% in plant height and 4.8% to 61.9% in whole plant weight. From 42 to 56 d after seeding, however, the relative growth of seedling was significantly inhibited by Ca amendment. [Conclusion] Results of this study indicate that appropriate supplemental Ca could improve sorghum germination and early seedling growth in saline soils.展开更多
基金Supported by the National High Technology Research and Development Program of China (863 Program) (Nos. 2006AA10A412 2006AA10A416)+1 种基金Main Program of National Science Infrastructure Platform, a project from the Ministry of Science and Technology of China (No. 2006DKA30470-017)a non-profit program from the Ministry of Agriculture of China (No. 200903030)
文摘In our trials, from 2007 to 2008, of mass production of seedlings of Hizikiafusiformis using synchronization techniques, problems of a "dark thalli" phenomenon and epiphytes contamination severely threatened the health of juvenile seedlings. In this investigation, we optimized conditions for improving the growth of juvenile seedlings. Seven string collectors were seeded with zygotes and a series of experiments were conducted including direct exposure to solar irradiance, co-culture with Ulva spp. and treatment with sodium hypochlorite. It was found that direct exposure to solar irradiance (maximum: 1 740 μmol photons/(m2.s)) for 2 h per day could efficiently enhance the growth of young seedlings and simultaneously inhibit the growth of epiphytic algae. In this treatment, 50-day old seedlings could reach an average of 0.44 cm in length and possess up to nine leaflets. However, a single treatment with 18-mmol/L sodium hypochlorite for 10 rain severely harmed 15-day old seedlings. In comparison, weekly treatment with 2.2-mmol/L sodium hypochlorite for 10 rain brought no apparent harm to seedlings and eliminated epiphytic algae efficiently. However, this treatment significantly increased the detachment rate of seedlings, Inoculating Ulva spp. onto the collector caused a dramatic decrease in the number of seedlings. However, the growth of the remaining seedlings appeared unhampered. All collectors except the control were daily sprayed with a high pressure water jet from the 84 day post fertilization. From the first day to 50th day, no "dark thallus" was observed on any of the seven collectors. We believe that well-timed daily exposure to solar irradiance would favor H. fusiformis in its early growing stages.
基金Supported by Priority Academic Program Development of Jiangsu Higher Education Institution,Natural Science Foundation of China(31171483)Fund for Returning Overseas Scholars(2011)+1 种基金Jiangsu Provincial Science Technology Support Program (BE2010307)the Start-up Project of Yangzhou University(2006 and 2009)
文摘[Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of different combinations of Na/Ca ratio in saline soils on the early growth of sweet sorghum plants. [Method] A germi- nation test and a greenhouse pot experiment were conducted to assess the interac- tive effects of calcium addition to culture medium on the germination and seedling growth of sweet sorghum (Sorghum saccharatum Moench) in saline soils with a range of NaYCa ratios. In the germination test, seeds were treated with different combinations of five calcium levels [0, 5, 10, 15, and 20 mmol/L Ca(NO3)2] and five salinity levels (0, 50, 100, 150, and 200 mmol/L NaCI). In the greenhouse experi- ment, seeds were sown in potting soils containing 3 salinity levels (2.3, 4.7 and 7.0 dS/m) and three Na:Ca ratios (10:0, 10:1, and 5:1). [Result] In the germination test, Ca addition at 5 mmol/L promoted germination by 5.5%, 9.9%, and 17.0% at the 3.4, 6.7 and 10.1 dS/m salinity levels. The higher Ca level (10 mmol/L) also in- creased germination by 9.1% and 7.8% at the 3.4 and 6.7 dS/m salinity levels. Then even higher Ca addition at 15 and 20 mmol/L appeared to promote germina- tion when culture media had high salinity (10.1 and 13.4 dS/m). In the greenhouse pot experiment, saline soil amended with supplemental Ca at the 2.3 and 4.7 dS/m salinity levels significantly promoted early seedling growth, with an increase of 6.8% to 28.2% in plant height and 14.3% to 67.9% in whole plant weight. From 28 to 42 d after seeding, the relative growth of seedling was increased by Ca addition, with a reduction of 49.5% to 66.0% in plant height and 4.8% to 61.9% in whole plant weight. From 42 to 56 d after seeding, however, the relative growth of seedling was significantly inhibited by Ca amendment. [Conclusion] Results of this study indicate that appropriate supplemental Ca could improve sorghum germination and early seedling growth in saline soils.