期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
盲信号分离和序贯滤波的SAR影像水体提取 被引量:1
1
作者 王栋 陈映鹰 秦平 《计算机工程与应用》 CSCD 北大核心 2011年第2期165-168,共4页
采用一种新的基于盲信号分离(BSS)和序列非线性滤波方法实现多极化合成孔径雷达(SAR)影像相干斑噪声抑制和水体目标快速提取。SAR影像具有强烈乘性相干斑噪声,影像数据为非高斯分布,但其具体分布形式及参数难以获得。利用基于独立分量... 采用一种新的基于盲信号分离(BSS)和序列非线性滤波方法实现多极化合成孔径雷达(SAR)影像相干斑噪声抑制和水体目标快速提取。SAR影像具有强烈乘性相干斑噪声,影像数据为非高斯分布,但其具体分布形式及参数难以获得。利用基于独立分量分析的盲信号分离方法,不需要知道SAR影像的具体分布,通过对数量化将相干斑噪声转化为与图像数据相互独立的加性噪声,从多极化SAR影像中自动分离出图像数据与相干斑噪声,并自动选择相干斑指数最小的分量为图像分量。针对SAR影像水体目标的亮度及形状分布特征,进一步采用序列非线性滤波处理,从分离出的图像分量中提取出水体目标。利用ENVI-SAT ASAR多极化影像进行了实验,结果表明该方法可以快速准确地提取多极化SAR影像中的水体目标。 展开更多
关键词 极化合成孔径雷达影像 水体目标 自动识别 盲信号分离 序列非线性滤波
下载PDF
基于ICA和SNF的SAR机场目标提取 被引量:7
2
作者 王栋 陈映鹰 秦平 《计算机工程》 CAS CSCD 北大核心 2009年第24期1-3,共3页
针对合成孔径雷达(SAR)影像相干斑噪声强烈且分布形式及参数获取困难的问题,提出一种基于独立分量分析(ICA)和序列非线性滤波(SNF)实现多极化SAR影像相干斑噪声抑制和机场目标快速提取方法。利用ICA从多极化SAR影像中自动分离出图像数... 针对合成孔径雷达(SAR)影像相干斑噪声强烈且分布形式及参数获取困难的问题,提出一种基于独立分量分析(ICA)和序列非线性滤波(SNF)实现多极化SAR影像相干斑噪声抑制和机场目标快速提取方法。利用ICA从多极化SAR影像中自动分离出图像数据与相干斑噪声,自动选择相干斑指数最小的分量为图像分量。通过SNF从分离出的图像分量中提取出机场目标。采用ENVISAT ASAR多极化影像进行实验,结果表明该方法能快速准确地提取多极化SAR影像中的机场目标。 展开更多
关键词 极化合成孔径雷达影像 机场目标 自动识别 独立分量分析 序列非线性滤波
下载PDF
Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond 被引量:8
3
作者 Tian-cheng LIn Jin-ya SU +1 位作者 Wci LIU Juan M. CORCHADO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第12期1913-1939,共27页
Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that... Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed 'Gaussian conjugacy' in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity. 展开更多
关键词 Kalman filter Gaussian filter Time series estimation Bayesian filtering Nonlinear filtering Constrained filtering Gaussian mixture MANEUVER Unknown inputs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部