针对大规模建筑物点云数据采用CPD(coherent point drift)算法进行配准时,计算复杂度增大的问题,提出了一种基于建筑物点云特征点简化数据的快速配准ISS-CPD算法。该配准算法采用ISS(intrinsic shape signature)算法求得建筑物点云的特...针对大规模建筑物点云数据采用CPD(coherent point drift)算法进行配准时,计算复杂度增大的问题,提出了一种基于建筑物点云特征点简化数据的快速配准ISS-CPD算法。该配准算法采用ISS(intrinsic shape signature)算法求得建筑物点云的特征点,可减少建筑物点云的数据量规模,再对所提取的不同视角下建筑物点云的特征点用CPD算法进行配准。实验结果表明,改进的配准算法提高了建筑物点云的配准效率。展开更多
文摘针对大规模建筑物点云数据采用CPD(coherent point drift)算法进行配准时,计算复杂度增大的问题,提出了一种基于建筑物点云特征点简化数据的快速配准ISS-CPD算法。该配准算法采用ISS(intrinsic shape signature)算法求得建筑物点云的特征点,可减少建筑物点云的数据量规模,再对所提取的不同视角下建筑物点云的特征点用CPD算法进行配准。实验结果表明,改进的配准算法提高了建筑物点云的配准效率。