期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
新型递归神经网络求解时变矩阵Moore-Penrose逆 被引量:2
1
作者 向秋红 廖柏林 马川 《吉首大学学报(自然科学版)》 CAS 2017年第3期31-35,共5页
将传统梯度神经网络(GNN)与张神经网络(ZNN)巧妙结合,提出了一种新型的神经网络(NNN)模型.在相同的条件下,采用NNN,GNN,ZNN模型求解时变矩阵M-P逆,从理论上证明了NNN模型的有效性和优越性.计算机仿真结果表明NNN模型在有噪声的条件下求... 将传统梯度神经网络(GNN)与张神经网络(ZNN)巧妙结合,提出了一种新型的神经网络(NNN)模型.在相同的条件下,采用NNN,GNN,ZNN模型求解时变矩阵M-P逆,从理论上证明了NNN模型的有效性和优越性.计算机仿真结果表明NNN模型在有噪声的条件下求解矩阵M-P逆具鲁棒性. 展开更多
关键词 梯度神经网络 张神经网络 矩阵Moore-Penrose逆
下载PDF
用新激活函数加快新ZNN模型求解时变矩阵Moore-Penrose逆
2
作者 唐智超 高月凤 《理论数学》 2024年第1期9-16,共8页
基于梯度的神经网络(GNN)和张神经网络(ZNN)是两种可用于求解时变矩阵Moore-Penrose逆问题的递归神经网络。与GNN相比,ZNN的计算精度更高。此外,本文提出了一种新的ZNN模型。因此,本文主要利用带有新优化激活函数的ZNN模型来求解时变行... 基于梯度的神经网络(GNN)和张神经网络(ZNN)是两种可用于求解时变矩阵Moore-Penrose逆问题的递归神经网络。与GNN相比,ZNN的计算精度更高。此外,本文提出了一种新的ZNN模型。因此,本文主要利用带有新优化激活函数的ZNN模型来求解时变行满秩(或列满秩)矩阵Moore-Penrose逆问题。这种带有新优化激活函数的ZNN模型可以在有限时间内加速求解时变矩阵的Moore-Penrose逆。通过Lyapunov理论分析,得到了收敛时间的上限。仿真结果进一步证实了理论分析,并证明了采用新优化的激活函数的ZNN模型在求解时变矩阵Moore-Penrose逆时的有效性。 展开更多
关键词 MOORE-PENROSE逆 张神经网络 激活函数 时变矩阵
下载PDF
Interaction Energy Prediction of Organic Molecules using Deep Tensor Neural Network
3
作者 Yuan Qi Hong Ren +6 位作者 Hong Li Ding-lin Zhang Hong-qiang Cui Jun-ben Weng Guo-hui Li Gui-yan Wang Yan Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第1期112-124,I0012,共14页
The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction ... The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction energy based on quantum mechanics can not be merged into molecular dynamic simulation for a long time scale.A deep learning framework,deep tensor neural network,is applied to predict the interaction energy of three organic related systems within the quantum mechanics level of accuracy.The geometric structure and atomic types of molecular conformation,as the data descriptors,are applied as the network inputs to predict the interaction energy in the system.The neural network is trained with the hierarchically generated conformations data set.The complex tensor hidden layers are simplified and trained in the optimization process.The predicted results of different molecular sys tems indica te that deep t ensor neural net work is capable to predic t the interaction energy with 1 kcal/mol of the mean absolute error in a relatively short time.The prediction highly improves the efficiency of interaction energy calculation.The whole proposed framework provides new insights to introducing deep learning technology into the interaction energy calculation. 展开更多
关键词 Deep tensor neural net work Interac tion energy Organic molecules
下载PDF
The study of film tension control system based on RBF neural network and PID
4
作者 Jia Chunying Ding Zhigang Chen Yuchen 《International English Education Research》 2014年第8期82-85,共4页
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica... In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID. 展开更多
关键词 Control PID algorithm Jacobian information identification RBF neural network Matlab
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部