针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机...针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机动弱目标TBD算法。该方法利用MMPF的方法对机动弱目标量测数据进行处理,输出初步的检测和跟踪结果;将MMPF的输出结果重新定义为新的量测并进行目标的航迹起始、关联及滤波并给出目标的航迹;最后,利用航迹预测值对目标航迹进行平滑处理,有效解决粒子退化导致的漏检问题。仿真结果表明该算法可以有效提高目标航迹的稳健性。展开更多
文摘针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机动弱目标TBD算法。该方法利用MMPF的方法对机动弱目标量测数据进行处理,输出初步的检测和跟踪结果;将MMPF的输出结果重新定义为新的量测并进行目标的航迹起始、关联及滤波并给出目标的航迹;最后,利用航迹预测值对目标航迹进行平滑处理,有效解决粒子退化导致的漏检问题。仿真结果表明该算法可以有效提高目标航迹的稳健性。