The electronic structures,chemical bonding,elastic and optical properties of the ternary stannide phase Na2MgSn were investigated by using density-fimctional theory(DFT) within generalized gradient approximation(GG...The electronic structures,chemical bonding,elastic and optical properties of the ternary stannide phase Na2MgSn were investigated by using density-fimctional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that Na2MgSn is an indirect semiconductor material with a narrow band gap 0.126 eV.The density of state(DOS)and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the Na 2p,Mg 3p and Sn5 p states.Population analysis suggests that there are strongly bonded Mg-Sn honeycomb layers in Na2MgSn.Basic physical properties,such as lattice constant,bulk modulus,shear modulus,elastic constants c(ij) were calculated.The elastic modulus E and Poisson ratio v were also predicted.The results show that Na2MgSn is mechanically stable soft material and behaves in a brittle manner.Detailed analysis of all optical functions reveals that Na2MgSn is a better dielectric material,and reflectivity spectra show that Na2MgSn promise as good coating materials in the energy regions 6.24-10.49 eV.展开更多
The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The cal...The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.展开更多
The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within genera...The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.展开更多
The guide-weight method is introduced to solve the topology optimization problems of thermoelastic structures in this paper.First,the solid isotropic microstructure with penalization(SIMP)with different penalty factor...The guide-weight method is introduced to solve the topology optimization problems of thermoelastic structures in this paper.First,the solid isotropic microstructure with penalization(SIMP)with different penalty factors is selected as a material interpolation model for the thermal and mechanical fields.The general criteria of the guide-weight method is then presented.Two types of iteration formulas of the guide-weight method are applied to the topology optimization of thermoelastic structures,one of which is to minimize the mean compliance of the structure with material constraint,whereas the other one is to minimize the total weight with displacement constraint.For each type of problem,sensitivity analysis is conducted based on SIMP model.Finally,four classical 2-dimensional numerical examples and a 3-dimensional numerical example considering the thermal field are selected to perform calculation.The factors that affect the optimal topology are discussed,and the performance of the guide-weight method is tested.The results show that the guide-weight method has the advantages of simple iterative formula,fast convergence and relatively clear topology result.展开更多
Lithium(Li)metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity.However,the formation of dendrites and its tendency for large volume expansion ...Lithium(Li)metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity.However,the formation of dendrites and its tendency for large volume expansion during plating/stripping restrict the application of Li metal in practical scenarios.In this work,we developed reduced graphene oxide-graphitic carbon nitride(rGO-C3N4,GCN)with highly elastic and wrinkled structure as the current collector.Lithiophilic site C3N4 in GCN could reduce the nucleation overpotential.In addition,this material effectively inhibited electrode expansion during cycling.At the same time,due to its high elasticity,GCN could release the stress induced by Li deposition to maintain structural integrity of the electrode.Limetal anodes with GCN exhibited small volume expansion,high Coulombic efficiency(CE)of 98.6%within 300 cycles and long cycling life of more than 1700 h.This work described and demonstrated a new approach to construct flexible current collectors for stable lithium-metal anodes.展开更多
Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people...Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.展开更多
基金Project (11271121) supported by the National Natural Science Foundation of ChinaProject (11JJ2002) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project (11K038) supported by Key Laboratory of High Performance Computing and Stochastic Information Processing of Ministry of Education of ChinaProjects (2013GK3130,2014GK3090) supported by the Scientific and Techrnological Plan of Hunan Province,China
文摘The electronic structures,chemical bonding,elastic and optical properties of the ternary stannide phase Na2MgSn were investigated by using density-fimctional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that Na2MgSn is an indirect semiconductor material with a narrow band gap 0.126 eV.The density of state(DOS)and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the Na 2p,Mg 3p and Sn5 p states.Population analysis suggests that there are strongly bonded Mg-Sn honeycomb layers in Na2MgSn.Basic physical properties,such as lattice constant,bulk modulus,shear modulus,elastic constants c(ij) were calculated.The elastic modulus E and Poisson ratio v were also predicted.The results show that Na2MgSn is mechanically stable soft material and behaves in a brittle manner.Detailed analysis of all optical functions reveals that Na2MgSn is a better dielectric material,and reflectivity spectra show that Na2MgSn promise as good coating materials in the energy regions 6.24-10.49 eV.
基金Project (60571043) supported by the National Natural Science Foundation of ChinaProject (11JJ2002) supported by the Natural Science Foundation of Hunan Province, China
文摘The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of High Performance Computing and Stochastic Information Processing of Hunan Province,ChinaProject(2013GK3130)supported by the Scientific and Technological Plan Project of Hunan Province,China
文摘The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.
基金supported by the National Natural Science Foundation of China(Grant No.51375251)the National Basic Research Program("973"Program)(Grant No.2013CB035400)of China
文摘The guide-weight method is introduced to solve the topology optimization problems of thermoelastic structures in this paper.First,the solid isotropic microstructure with penalization(SIMP)with different penalty factors is selected as a material interpolation model for the thermal and mechanical fields.The general criteria of the guide-weight method is then presented.Two types of iteration formulas of the guide-weight method are applied to the topology optimization of thermoelastic structures,one of which is to minimize the mean compliance of the structure with material constraint,whereas the other one is to minimize the total weight with displacement constraint.For each type of problem,sensitivity analysis is conducted based on SIMP model.Finally,four classical 2-dimensional numerical examples and a 3-dimensional numerical example considering the thermal field are selected to perform calculation.The factors that affect the optimal topology are discussed,and the performance of the guide-weight method is tested.The results show that the guide-weight method has the advantages of simple iterative formula,fast convergence and relatively clear topology result.
基金the National Natural Science Foundation of China(51525206 and 51927803)the National Key R&D Program of China(2016YFA0200100 and 2016YFB0100100)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010602)Liaoning Revitalization Talents Program(XLYC1908015)China Petrochemical Cooperation(218025)。
文摘Lithium(Li)metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity.However,the formation of dendrites and its tendency for large volume expansion during plating/stripping restrict the application of Li metal in practical scenarios.In this work,we developed reduced graphene oxide-graphitic carbon nitride(rGO-C3N4,GCN)with highly elastic and wrinkled structure as the current collector.Lithiophilic site C3N4 in GCN could reduce the nucleation overpotential.In addition,this material effectively inhibited electrode expansion during cycling.At the same time,due to its high elasticity,GCN could release the stress induced by Li deposition to maintain structural integrity of the electrode.Limetal anodes with GCN exhibited small volume expansion,high Coulombic efficiency(CE)of 98.6%within 300 cycles and long cycling life of more than 1700 h.This work described and demonstrated a new approach to construct flexible current collectors for stable lithium-metal anodes.
基金supported by the National Natural Science Foundation of China (Grant No. 11072076)
文摘Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.