Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue ...Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation(FRT), bending vibration(BV) and axial linear-distributed random rigid translation(ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom(SDOF) elastic system analytically, the BV can be solved by the Rayleigh's method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.展开更多
The present study aims to develop a robust structural damage identification method that can be used for the evaluation of bridge structures. An approach for the structural damage identification based on the measuremen...The present study aims to develop a robust structural damage identification method that can be used for the evaluation of bridge structures. An approach for the structural damage identification based on the measurement of natural frequencies is presented. The structural damage model is assumed to be associated with a reduction of a contribution to the element stiffness matrix equivalent to a scalar reduction of the material modulus. A computational procedure for the direct iteration technique based on the non-linear perturbation theory is proposed to identify structural damage. The presented damage identification technique is applied to the footbridge over the Slunjcica River near Slunj to demonstrate the effectiveness of the proposed approach. Using a limited number of measured natural frequencies, reduction in the stiffness of up to 100% at multiple sites is detected. The results indicate that the proposed approach can be successful in not only predicting the location of damage but also in determining the extent of structural damage.展开更多
Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people...Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.展开更多
基金Project(51221462) supported by the National Natural Science Foundation of ChinaProject(20120095110001) supported by the Ph D Programs Foundation of Ministry of Education of China
文摘Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation(FRT), bending vibration(BV) and axial linear-distributed random rigid translation(ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom(SDOF) elastic system analytically, the BV can be solved by the Rayleigh's method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.
文摘The present study aims to develop a robust structural damage identification method that can be used for the evaluation of bridge structures. An approach for the structural damage identification based on the measurement of natural frequencies is presented. The structural damage model is assumed to be associated with a reduction of a contribution to the element stiffness matrix equivalent to a scalar reduction of the material modulus. A computational procedure for the direct iteration technique based on the non-linear perturbation theory is proposed to identify structural damage. The presented damage identification technique is applied to the footbridge over the Slunjcica River near Slunj to demonstrate the effectiveness of the proposed approach. Using a limited number of measured natural frequencies, reduction in the stiffness of up to 100% at multiple sites is detected. The results indicate that the proposed approach can be successful in not only predicting the location of damage but also in determining the extent of structural damage.
基金supported by the National Natural Science Foundation of China (Grant No. 11072076)
文摘Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.