CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can ...CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.展开更多
Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×...Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.展开更多
Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in di...Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in different loading modes and influences of different gradient changes on flexural strength were investigated. The results show that ZrO2/ SUS316L FGMs with graded components at interlayers are obtained after they are sintered in vacuum and pressureless condition at 1 350 ℃. TheⅠ?Ⅱ mixed mode crack creates in composite layer and grows to both sides zigzag while loading on ZrO2 layer. Flexural strengths are 496.4,421.7 and 387.5 MPa when gradient changes are 10%,15% and 20%,but flexural strengths of the corresponding fracture layers are 387.1,334.6 and 282.3 MPa since cracks of FGMs are affected by three-dimensional stress,respectively. The cracks are generated in ZrO2 layer and extend to SUS316L layer while loading is added on SUS316L layer,flexural strength does not change with the graded components and keeps consistent basically.展开更多
In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,...In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.展开更多
In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under diff...In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.展开更多
The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress function...The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress functions required to compute stresses in terms of a set of unknown coefficients for the specified displacement expressions satisfying the prescribed boundary conditions. The assumed Coulomb friction between the plate and the pin was used to provide the solution and iteration was also used to determine the extent of contact region. The results from present study showed good agreement with the available results in literature for all the joint configurations evaluated.展开更多
A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electric...A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electrical resistivity and ultrasonic equipment.Results show that:1)Uniaxial compressive strength(UCS)and elastic modulus(EM)of the samples curing under pressure are higher than those of the control samples without pressure,ranging in ratio from 0.5%to 20.2%and 7.1%to 52.3%,respectively,and are influenced by the initial loading age(ILA)and stress strength ratio(SSR).The SSR during curing should not exceed 80%.2)The earlier the ILA is,the higher the total strain becomes.The higher the SSR applies,the larger the total strain gets.The creep strain increases with the increase of SSR and can be described by Burger’s viscoelastic creep model.When SSR is less than 80%,the earlier the ILA is,the smaller the creep strain becomes after the last step-loading.3)The stability of the early age backfill column under pressure can be monitored based on the change of ultrasonic pulse velocity(UPV)and electrical resistivity.展开更多
To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston...To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.展开更多
The paper presents the behaviour of concrete elements, in this case the beams under the different loadings result with the capacity of section. In analyzing process, results are followed with the deflections of beams ...The paper presents the behaviour of concrete elements, in this case the beams under the different loadings result with the capacity of section. In analyzing process, results are followed with the deflections of beams and the cracks. In this paper, we analyse the type, form and dimensions of cracks under the third point load method of applied loads in simple concrete beam. To improve the capacity, the authors use the different types of FRP (fibre reinforcement polymers), including the glass fibre reinforcement polymers and carbon fibre reinforcement polymers, comparing the deflections and cracks. The focused parameters are in using the different methods for transversal force, including the primary forms with steel stirrups and the new proposal for using the outside stirrups from FRP. The all analyses presented in this paper are based on the analytical model and experimental results. The behaviour of beams under the mixed form with ordinary steel stirrups and proposal stirrups from FRP, successfully increase the energetic capacity of sections.展开更多
The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on...The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.展开更多
Hydroxyapatite bioceramics is simulated by using finite element method (FEM). The influences of porosity, hole shape, angle of crack and other parameters on the ceramics are analyzed. The results show that with the ...Hydroxyapatite bioceramics is simulated by using finite element method (FEM). The influences of porosity, hole shape, angle of crack and other parameters on the ceramics are analyzed. The results show that with the increase of the angle between crack and horizontal direction, the stress intensity factor KⅠ decreases gradually, but stress intensity factor KⅡ increases at first and then it decreases. The value of KⅡ reaches maximum when the angle between crack and horizontal direction is 45°. KⅠ and KⅡ rise with the increase of porosity, and they are almost the same for the circular and hexagonal holes. For elliptical holes, KⅠ and KⅡ reach maximum when the long axis of ellipse is perpendicular to the loading direction and they reach minimum when the same axis is parallel to the loading direction. Moreover, with the increase of the angle between the long axis and loading direction, KⅠ and KⅡ increase gradually.展开更多
This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a...This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a system of Cauchy type singular integral equations. The system of singular integral equations is approached by a Quadrature technique. Under two different loading conditions, the results are obtained for the different cases of crack numbers. The resistance of the strip is examined by considering the orthotropic properties of the strip material. Finally, the crack interactions are clarified during the analysis.展开更多
Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, bu...Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.展开更多
文摘CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Beijing Natural Science Foundation,China
文摘Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.
基金Project (2007K06-13) supported by the Science and Technique Research and Development Program of Shaanxi Province, China
文摘Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in different loading modes and influences of different gradient changes on flexural strength were investigated. The results show that ZrO2/ SUS316L FGMs with graded components at interlayers are obtained after they are sintered in vacuum and pressureless condition at 1 350 ℃. TheⅠ?Ⅱ mixed mode crack creates in composite layer and grows to both sides zigzag while loading on ZrO2 layer. Flexural strengths are 496.4,421.7 and 387.5 MPa when gradient changes are 10%,15% and 20%,but flexural strengths of the corresponding fracture layers are 387.1,334.6 and 282.3 MPa since cracks of FGMs are affected by three-dimensional stress,respectively. The cracks are generated in ZrO2 layer and extend to SUS316L layer while loading is added on SUS316L layer,flexural strength does not change with the graded components and keeps consistent basically.
基金Project(10472134) supported by the National Natural Science Foundation of China
文摘In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.
基金Projects(51208066,51038002)supported by the National Natural Science Foundation of ChinaProject(20114316120001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China+5 种基金Project(2012-319-825-150)supported by Application and Basic Research Projects of Ministry of Transport ChinaProject(2013K28)supported by Transportation Science and Technology Plan Projects of Henan Province,ChinaProject(201102)supported by Transportation Science and Technology Plan Projects of Hunan Province,ChinaProject(YB2012B031)supported by Funding Projects of Hunan Provincial Outstanding Doctorate Dissertation,ChinaProject(2014gxjgclkf-002)supported by Open Fund of Key Laboratory of Road Structure and Material of Guangxi Province ChinaProject(kfj120101)supported by Open Fund of the Key Laboratory of Highway Engineering(Changsha University of Science and Technology),China
文摘In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.
文摘The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress functions required to compute stresses in terms of a set of unknown coefficients for the specified displacement expressions satisfying the prescribed boundary conditions. The assumed Coulomb friction between the plate and the pin was used to provide the solution and iteration was also used to determine the extent of contact region. The results from present study showed good agreement with the available results in literature for all the joint configurations evaluated.
基金Project(51974192)supported by the National Natural Science Foundation of ChinaProject(201803D31044)supported by the Program for Key Research Project of Shanxi Province in the Field of Social Development,ChinaProject(201801D121092)supported by the Applied Basic Research Project of Shanxi Province,China。
文摘A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electrical resistivity and ultrasonic equipment.Results show that:1)Uniaxial compressive strength(UCS)and elastic modulus(EM)of the samples curing under pressure are higher than those of the control samples without pressure,ranging in ratio from 0.5%to 20.2%and 7.1%to 52.3%,respectively,and are influenced by the initial loading age(ILA)and stress strength ratio(SSR).The SSR during curing should not exceed 80%.2)The earlier the ILA is,the higher the total strain becomes.The higher the SSR applies,the larger the total strain gets.The creep strain increases with the increase of SSR and can be described by Burger’s viscoelastic creep model.When SSR is less than 80%,the earlier the ILA is,the smaller the creep strain becomes after the last step-loading.3)The stability of the early age backfill column under pressure can be monitored based on the change of ultrasonic pulse velocity(UPV)and electrical resistivity.
基金Projects(41972283,41630642)supported by the National Natural Science Foundation of ChinaProject(51927808)supported by the National Key Scientific Instrument and Equipment Development,ChinaProject(CX2018B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.
文摘The paper presents the behaviour of concrete elements, in this case the beams under the different loadings result with the capacity of section. In analyzing process, results are followed with the deflections of beams and the cracks. In this paper, we analyse the type, form and dimensions of cracks under the third point load method of applied loads in simple concrete beam. To improve the capacity, the authors use the different types of FRP (fibre reinforcement polymers), including the glass fibre reinforcement polymers and carbon fibre reinforcement polymers, comparing the deflections and cracks. The focused parameters are in using the different methods for transversal force, including the primary forms with steel stirrups and the new proposal for using the outside stirrups from FRP. The all analyses presented in this paper are based on the analytical model and experimental results. The behaviour of beams under the mixed form with ordinary steel stirrups and proposal stirrups from FRP, successfully increase the energetic capacity of sections.
基金the National Natural Science Foundation of China(No.12162010)the Science Technology Base and Talent Special Project of Guangxi,China(No.AD19245143)Natural Science Foundation of Guangxi,China(No.2021GXNSFAA220087).
文摘The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.
基金Supported by National Natural Science Foundation of China (No.10772133 and No.11072172)Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20090032110006)
文摘Hydroxyapatite bioceramics is simulated by using finite element method (FEM). The influences of porosity, hole shape, angle of crack and other parameters on the ceramics are analyzed. The results show that with the increase of the angle between crack and horizontal direction, the stress intensity factor KⅠ decreases gradually, but stress intensity factor KⅡ increases at first and then it decreases. The value of KⅡ reaches maximum when the angle between crack and horizontal direction is 45°. KⅠ and KⅡ rise with the increase of porosity, and they are almost the same for the circular and hexagonal holes. For elliptical holes, KⅠ and KⅡ reach maximum when the long axis of ellipse is perpendicular to the loading direction and they reach minimum when the same axis is parallel to the loading direction. Moreover, with the increase of the angle between the long axis and loading direction, KⅠ and KⅡ increase gradually.
文摘This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a system of Cauchy type singular integral equations. The system of singular integral equations is approached by a Quadrature technique. Under two different loading conditions, the results are obtained for the different cases of crack numbers. The resistance of the strip is examined by considering the orthotropic properties of the strip material. Finally, the crack interactions are clarified during the analysis.
基金Supported by the National Natural Science Foundation of China(No.51078059)
文摘Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.