To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston...To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.展开更多
Purpose: The purpose of this study was to establish the relationship between various expressions of relative exercise intensity percentage of maximal oxygen uptake(%VO_(2max)), percentage of maximal heart rate(%HR_(ma...Purpose: The purpose of this study was to establish the relationship between various expressions of relative exercise intensity percentage of maximal oxygen uptake(%VO_(2max)), percentage of maximal heart rate(%HR_(max)), %VO_2 reserve(%VO_2R), and %HR reserve(%HRR)) in order to obtain the more appropriate method for exercise intensity prescription when using an immersible ergocycle(IE) and to propose a prediction equation to estimate oxygen consumption(VO_2) based on IE pedaling rate(rpm) for an individualized exercise training prescription.Methods: Thirty-three healthy participants performed incremental exercise tests on IE and dryland ergocycle(DE) at equal external power output(Pext). Exercise on IE began at 40 rpm and was increased by 10 rpm until exhaustion. Exercise on DE began with an initial load of 25 W and increased by 25 W/min until exhaustion. VO_2 was measured with a portable gas analyzer(COSMED K4b^2) during both incremental tests. On IE and DE, %VO_2R, %HRmax, and %HRR at equal Pext did not differ(p > 0.05).Results: The %HRR vs. %VO_2R regression for both IE and DE did not differ from the identity line %VO_2R IE = 0.99 × HRR IE(%) + 0.01(r^2= 0.91, SEE = 11%); %VO_2R DE = 0.94 × HRR DE(%) + 0.01(r^2= 0.94, SEE = 8%). Similar mean values for %HRmax, %VO_2R, and %HRR at equal Pext were observed on IE and DE. Predicted VO_2 obtained according to rpm on IE is represented by: VO_2(L/min) = 0.000542 × rpm2-0.026 × rpm + 0.739(r = 0.91, SEE = 0.319 L/min).Conclusion: The %HRR–%VO_2R relationship appears to be the most accurate for exercise training prescription on IE. This study offers new tools to better prescribe, control, and individualize exercise intensity on IE.展开更多
A set of methods designed to improve (i.e.extend) the medium-term forecasting of persistent severe rainfall (PSR) events in China using the regional Weather Research and Forecasting model are summarized.Simulation...A set of methods designed to improve (i.e.extend) the medium-term forecasting of persistent severe rainfall (PSR) events in China using the regional Weather Research and Forecasting model are summarized.Simulations show that achieving a more efficient use of large-scale atmospheric variations of the global model and retaining small-scale features in the regional model are critical for better forecasting PSR events.For precipitation,the larger the magnitude and longer the lead time,the more significant the improvement-especially for the methods of spectral nudging and updated initial conditions.In terms of large-scale circulation,the anomaly correlation coefficient can be distinctly improved for 1-5-day lead times by adopting the spectral nudging technique,whereas lateral boundary filtering results in marked improvement for 7-11-day lead times.展开更多
Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction wa...Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.展开更多
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were...Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.展开更多
This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal curre...This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal current data from the Zhoushan sea area, which indicate that the main tidal cycle near Hulu Island and Taohua Island is semi-diurnal cycle, the diurnal cycle is subordinate. Both their intensities are changed periodically, meanwhile, the diurnal tide becomes stronger when semi-diurnal tide becomes weak. The intensity of baroclinie tidal current weakens at first and then strengthens from top to bottom. Then, in this paper, the Gregg-Henyey (G-H) parameterization method is adopted to calculate the turbulent kinetic energy dissipation rate based on the measured temperature and tidal current data. The results of which shown that the turbulent kinetic energy dissipation rate around Hulu Island is higher than that around Taohua Island. In most cases, the turbulent kinetic energy dissipation rate during spring tide is larger than that during the neap tide; the turbulent kinetic energy dissipation rate in the surface layer and the bottom layer are higher than that in the intermediate water; the changes of turbulent kinetic energy dissipation rate and tidal current are basically synchronous The modeled turbulent kinetic energy dissipation rate gets smaller with the increase of the stratification, however, gets larger with the increase of shearing.展开更多
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e...The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.展开更多
Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the anal...Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the analysis of the earthquake preparation process before a strong earthquake occurs. Furthermore,the seismic risks on active faults are studied. The results show that the earthquake probabilities on the Xianshuihe fault,the Altyn Tagh fault,the east Kunlun fault and Xiaojiang fault are significantly greater than other faults in the Chinese mainland,which indicates that the level of stress accumulation on these faults are higher than on other faults. Therefore,these faults may have a seismic risk for strong earthquake in future.展开更多
The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic cr...The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic crack tip solution are adopted for describing the discontinuity and singularity of the crack in shells.Level set method(LSM)is used to represent the crack surface and define the enriched shape functions.Stress intensity factors(SIFs)are calculated by the displacement interpolation technique to prove the capability of the method and the maximum strain is applied for the fracture criterion.Also,an efficient integration scheme for the CB shell element with cracks is proposed.展开更多
We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM f...We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM features an ultra-rigid and compact scan head in which the coarse approach is driven by our newly designed TunaDrive piezoelectric motor. A three-level spring hanging system is used for vibration isolation. Room-temperature raw-data images of graphite with quality atomic resolution were acquired in the presence of very strong magnetic fields, with a field strength up to 27 T, in a 32-mm-diameter bore WM with a maximum field strength of 27.5 T at a power rating of 10 MW, calibrated by nuclear magnetic resonance (NMR). This record field strength of 27 T exceeds the maximal field strength achieved by the conventional supercon- ducting magnets. Besides, our WM-STM has paved the way to STM imaging using a 45 T, 32-mm-diameter bore hybrid magnet, which is the world's flagship magnet, producing the strongest steady magnetic field.展开更多
Iron oxide particles with various shapes,sizes and phase concentrations(including--Fe2O3 and Fe3O4) have been synthesized through a simple hydrothermal method in the ethylene glycol(EG)-water system.In the preparation...Iron oxide particles with various shapes,sizes and phase concentrations(including--Fe2O3 and Fe3O4) have been synthesized through a simple hydrothermal method in the ethylene glycol(EG)-water system.In the preparation conditions,ferric chloride(FeCl3.6H2O) was used as the iron source in the presence of sodium hydroxide(NaOH) without any surfactants.By adjusting the experimental parameters(EG/H2O ratio,base content,iron ions concentration,etc.),the shape,the size,the phase and the magnetic property of the products could be easily controlled.The products were characterized by using X-ray diffraction(XRD),scanning electron microscopy(SEM),and a vibrating sample magnetometer(VSM).A further investigation revealed that high EG content and high alkaline condition favored the formation of Fe3O4 phase.A possible growth mechanism was proposed based on the experimental results.The magnetic properties were deeply affected by the morphology and phase of the as-synthesized products.The controlled shape,size and phase structure of the iron oxides through simple synthetic procedures provides potential opportunities to realize the promising size and shape-dependent applications.展开更多
基金Projects(41972283,41630642)supported by the National Natural Science Foundation of ChinaProject(51927808)supported by the National Key Scientific Instrument and Equipment Development,ChinaProject(CX2018B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.
基金provided by the éPIC Foundation and the Montreal Heart Institute Foundation
文摘Purpose: The purpose of this study was to establish the relationship between various expressions of relative exercise intensity percentage of maximal oxygen uptake(%VO_(2max)), percentage of maximal heart rate(%HR_(max)), %VO_2 reserve(%VO_2R), and %HR reserve(%HRR)) in order to obtain the more appropriate method for exercise intensity prescription when using an immersible ergocycle(IE) and to propose a prediction equation to estimate oxygen consumption(VO_2) based on IE pedaling rate(rpm) for an individualized exercise training prescription.Methods: Thirty-three healthy participants performed incremental exercise tests on IE and dryland ergocycle(DE) at equal external power output(Pext). Exercise on IE began at 40 rpm and was increased by 10 rpm until exhaustion. Exercise on DE began with an initial load of 25 W and increased by 25 W/min until exhaustion. VO_2 was measured with a portable gas analyzer(COSMED K4b^2) during both incremental tests. On IE and DE, %VO_2R, %HRmax, and %HRR at equal Pext did not differ(p > 0.05).Results: The %HRR vs. %VO_2R regression for both IE and DE did not differ from the identity line %VO_2R IE = 0.99 × HRR IE(%) + 0.01(r^2= 0.91, SEE = 11%); %VO_2R DE = 0.94 × HRR DE(%) + 0.01(r^2= 0.94, SEE = 8%). Similar mean values for %HRmax, %VO_2R, and %HRR at equal Pext were observed on IE and DE. Predicted VO_2 obtained according to rpm on IE is represented by: VO_2(L/min) = 0.000542 × rpm2-0.026 × rpm + 0.739(r = 0.91, SEE = 0.319 L/min).Conclusion: The %HRR–%VO_2R relationship appears to be the most accurate for exercise training prescription on IE. This study offers new tools to better prescribe, control, and individualize exercise intensity on IE.
基金supported by the National Natural Sci ence Foundation of China[grant number 41775097],[grant number 91437221]the National Key Basic Research Program of China[grant number 2012CB417204]the China Specia Fund for Meteorological Research in the Public Interest[grant number GYHY201506002]
文摘A set of methods designed to improve (i.e.extend) the medium-term forecasting of persistent severe rainfall (PSR) events in China using the regional Weather Research and Forecasting model are summarized.Simulations show that achieving a more efficient use of large-scale atmospheric variations of the global model and retaining small-scale features in the regional model are critical for better forecasting PSR events.For precipitation,the larger the magnitude and longer the lead time,the more significant the improvement-especially for the methods of spectral nudging and updated initial conditions.In terms of large-scale circulation,the anomaly correlation coefficient can be distinctly improved for 1-5-day lead times by adopting the spectral nudging technique,whereas lateral boundary filtering results in marked improvement for 7-11-day lead times.
基金The National Science and Technology Support Program of China(No.2014BAC07B03)the Science and Technology Project of Transportation Committee of Beijing Government(No.2016-LZJKJ-01-006)the National Natural Science Foundation of China(No.51278016)
文摘Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.
基金by the Natural Science Foundation of China (Grant No. 40801101)
文摘Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.
基金supported by the foundation items:The Chinese Marine Renewable Energy Special Fund(GHME 2012ZC05,GHME2013GC03,GHME2013ZC01,GHME 2014ZC01)
文摘This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal current data from the Zhoushan sea area, which indicate that the main tidal cycle near Hulu Island and Taohua Island is semi-diurnal cycle, the diurnal cycle is subordinate. Both their intensities are changed periodically, meanwhile, the diurnal tide becomes stronger when semi-diurnal tide becomes weak. The intensity of baroclinie tidal current weakens at first and then strengthens from top to bottom. Then, in this paper, the Gregg-Henyey (G-H) parameterization method is adopted to calculate the turbulent kinetic energy dissipation rate based on the measured temperature and tidal current data. The results of which shown that the turbulent kinetic energy dissipation rate around Hulu Island is higher than that around Taohua Island. In most cases, the turbulent kinetic energy dissipation rate during spring tide is larger than that during the neap tide; the turbulent kinetic energy dissipation rate in the surface layer and the bottom layer are higher than that in the intermediate water; the changes of turbulent kinetic energy dissipation rate and tidal current are basically synchronous The modeled turbulent kinetic energy dissipation rate gets smaller with the increase of the stratification, however, gets larger with the increase of shearing.
文摘The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.
基金supported by the National Natural Science Foundation of China(Grant No.41104036)
文摘Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the analysis of the earthquake preparation process before a strong earthquake occurs. Furthermore,the seismic risks on active faults are studied. The results show that the earthquake probabilities on the Xianshuihe fault,the Altyn Tagh fault,the east Kunlun fault and Xiaojiang fault are significantly greater than other faults in the Chinese mainland,which indicates that the level of stress accumulation on these faults are higher than on other faults. Therefore,these faults may have a seismic risk for strong earthquake in future.
基金supported by the National Natural Science Foundation of China(Grant No.11372157)
文摘The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic crack tip solution are adopted for describing the discontinuity and singularity of the crack in shells.Level set method(LSM)is used to represent the crack surface and define the enriched shape functions.Stress intensity factors(SIFs)are calculated by the displacement interpolation technique to prove the capability of the method and the maximum strain is applied for the fracture criterion.Also,an efficient integration scheme for the CB shell element with cracks is proposed.
文摘We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM features an ultra-rigid and compact scan head in which the coarse approach is driven by our newly designed TunaDrive piezoelectric motor. A three-level spring hanging system is used for vibration isolation. Room-temperature raw-data images of graphite with quality atomic resolution were acquired in the presence of very strong magnetic fields, with a field strength up to 27 T, in a 32-mm-diameter bore WM with a maximum field strength of 27.5 T at a power rating of 10 MW, calibrated by nuclear magnetic resonance (NMR). This record field strength of 27 T exceeds the maximal field strength achieved by the conventional supercon- ducting magnets. Besides, our WM-STM has paved the way to STM imaging using a 45 T, 32-mm-diameter bore hybrid magnet, which is the world's flagship magnet, producing the strongest steady magnetic field.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50832003 and 50972073)
文摘Iron oxide particles with various shapes,sizes and phase concentrations(including--Fe2O3 and Fe3O4) have been synthesized through a simple hydrothermal method in the ethylene glycol(EG)-water system.In the preparation conditions,ferric chloride(FeCl3.6H2O) was used as the iron source in the presence of sodium hydroxide(NaOH) without any surfactants.By adjusting the experimental parameters(EG/H2O ratio,base content,iron ions concentration,etc.),the shape,the size,the phase and the magnetic property of the products could be easily controlled.The products were characterized by using X-ray diffraction(XRD),scanning electron microscopy(SEM),and a vibrating sample magnetometer(VSM).A further investigation revealed that high EG content and high alkaline condition favored the formation of Fe3O4 phase.A possible growth mechanism was proposed based on the experimental results.The magnetic properties were deeply affected by the morphology and phase of the as-synthesized products.The controlled shape,size and phase structure of the iron oxides through simple synthetic procedures provides potential opportunities to realize the promising size and shape-dependent applications.