In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was estab...In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was established. The work roll and backup roll were considered as elastic continuous bodies that were joined by a Winkler elastic layer. According to Euler-Bemoulli beam theory, the forced transverse vibration of rolls was analyzed based on modal superposition method. The forced vibration equations were established when the draught pressure and moment of bending roll force were imposed on the rolls respectively. Numerical modeling was made on 2 030 mm cold tandem rolling mill of Baoshan Iron and Steel Company. Simulation results show that when the work roll is only subjected to different forms of draught pressures, the vibration curves of work roll and backup roll are quadratic curves with amplitudes of 0.3 mm and 45 μm, respectively. When only the moments of bending roll force are imposed on the work roll and backup roll, the vibration curves of work roll and backup roll are quadratic curves, and the amplitudes are 5.0 and 1.6 μm, respectively. The influence of moment of bending roll force on the vibration of work roll is related with the bending roll force.展开更多
Because of the action of strong magnetic forces, it's difficult to avoid end winding vibration in the large turbo-generator stator. Sometimes it leads to the occurrence of accidents and affects the normal operatio...Because of the action of strong magnetic forces, it's difficult to avoid end winding vibration in the large turbo-generator stator. Sometimes it leads to the occurrence of accidents and affects the normal operation of the generator. This paper firstly lays out the calculation method for end winding magnetic force. Second, based on the structure of large machines, the natural vibration frequency equation and forced oscillation equation is set up. Third, through the analysis of magnetic force calculation and vibration on the end winding of turbo-generator, it will be shown that the end winding vibration is related to the magnetic force and the position of winding binds as well as binding tightness. We can ease the winding vibration by distributing binding position appropriately or add more bindings, and test the concept through experimental data.展开更多
The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q ...The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q j,r∈C([t 0,∞),R),τ i,σ j≥0,i=1,2,…,m,j=1,2,…,n,f∈C(R,R),xf(x)>0 for x≠0. The results obtained here extend and improve some of the results of Ladas and Sficas [3] and J.R.Yan [5].展开更多
It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally pe...It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. The observation has been confirmed mathematically in the context of the damped Korteweg-de Vries (KdV) equation and the damped Benjamin-Bona-Mahony (BBM) equation. In this paper we intend to show the same results hold for the pure KdV equation (without the damping terms) posed on a finite domain. Consideration is given to the initial-boundary-value problem {ut+ux+uux+uxxx=0, u(x,0)=φ(x), 0〈x〈1, t〉0,u(0,t)=h(t), u(1,t) = 0, ux(1,t) = 0, t〉0.It is shown that if the boundary forcing h is periodic with small ampitude, then the small amplitude solution u of (*) becomes eventually time-periodic. Viewing (*) (without the initial condition) as an infinite-dimensional dynamical system in the Hilbert space L^2(0, 1), we also demonstrate that for a given periodic boundary forcing with small amplitude, the system (*) admits a (locally) unique limit cycle, or forced oscillation, which is locally exponentially stable. A list of open problems are included for the interested readers to conduct further investigations.展开更多
This paper gives several criteria on the oscillatory behavior of solutions of the forced secondorder equation x″+ a(t)i(x) = g(t), where g(t) is oscillatory) by using a geometric idea. Asspecial cases these results i...This paper gives several criteria on the oscillatory behavior of solutions of the forced secondorder equation x″+ a(t)i(x) = g(t), where g(t) is oscillatory) by using a geometric idea. Asspecial cases these results include and improve some recent results, given by J. S. Wong. Thecriteria also solve the problem posed by H. Onose in Mathematical Reviews, 1986.展开更多
基金Project(50875231) supported by the National Natural Science Foundation of ChinaProject(E2006001038) supported by Great Natural Science Foundation of Hebei Province, China
文摘In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was established. The work roll and backup roll were considered as elastic continuous bodies that were joined by a Winkler elastic layer. According to Euler-Bemoulli beam theory, the forced transverse vibration of rolls was analyzed based on modal superposition method. The forced vibration equations were established when the draught pressure and moment of bending roll force were imposed on the rolls respectively. Numerical modeling was made on 2 030 mm cold tandem rolling mill of Baoshan Iron and Steel Company. Simulation results show that when the work roll is only subjected to different forms of draught pressures, the vibration curves of work roll and backup roll are quadratic curves with amplitudes of 0.3 mm and 45 μm, respectively. When only the moments of bending roll force are imposed on the work roll and backup roll, the vibration curves of work roll and backup roll are quadratic curves, and the amplitudes are 5.0 and 1.6 μm, respectively. The influence of moment of bending roll force on the vibration of work roll is related with the bending roll force.
基金This work is supported by the National Natural Science Foun- dation of China under Grant 51105261.
文摘Because of the action of strong magnetic forces, it's difficult to avoid end winding vibration in the large turbo-generator stator. Sometimes it leads to the occurrence of accidents and affects the normal operation of the generator. This paper firstly lays out the calculation method for end winding magnetic force. Second, based on the structure of large machines, the natural vibration frequency equation and forced oscillation equation is set up. Third, through the analysis of magnetic force calculation and vibration on the end winding of turbo-generator, it will be shown that the end winding vibration is related to the magnetic force and the position of winding binds as well as binding tightness. We can ease the winding vibration by distributing binding position appropriately or add more bindings, and test the concept through experimental data.
文摘The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q j,r∈C([t 0,∞),R),τ i,σ j≥0,i=1,2,…,m,j=1,2,…,n,f∈C(R,R),xf(x)>0 for x≠0. The results obtained here extend and improve some of the results of Ladas and Sficas [3] and J.R.Yan [5].
文摘It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. The observation has been confirmed mathematically in the context of the damped Korteweg-de Vries (KdV) equation and the damped Benjamin-Bona-Mahony (BBM) equation. In this paper we intend to show the same results hold for the pure KdV equation (without the damping terms) posed on a finite domain. Consideration is given to the initial-boundary-value problem {ut+ux+uux+uxxx=0, u(x,0)=φ(x), 0〈x〈1, t〉0,u(0,t)=h(t), u(1,t) = 0, ux(1,t) = 0, t〉0.It is shown that if the boundary forcing h is periodic with small ampitude, then the small amplitude solution u of (*) becomes eventually time-periodic. Viewing (*) (without the initial condition) as an infinite-dimensional dynamical system in the Hilbert space L^2(0, 1), we also demonstrate that for a given periodic boundary forcing with small amplitude, the system (*) admits a (locally) unique limit cycle, or forced oscillation, which is locally exponentially stable. A list of open problems are included for the interested readers to conduct further investigations.
文摘This paper gives several criteria on the oscillatory behavior of solutions of the forced secondorder equation x″+ a(t)i(x) = g(t), where g(t) is oscillatory) by using a geometric idea. Asspecial cases these results include and improve some recent results, given by J. S. Wong. Thecriteria also solve the problem posed by H. Onose in Mathematical Reviews, 1986.