形式幂级数环R_∞=F[[γ]]={sum from l=0 to a_lγ~l|a_l∈F}与有限链环R_i={a_0+a_1γ+…+a_(i-1)γ^(i-1)|a_i∈F}的码的投影与提升有密切关系.利用形式幂级数环R_∞上码C在有限链环R_i的投影码的自正交性与自对偶性来研究码C的自正...形式幂级数环R_∞=F[[γ]]={sum from l=0 to a_lγ~l|a_l∈F}与有限链环R_i={a_0+a_1γ+…+a_(i-1)γ^(i-1)|a_i∈F}的码的投影与提升有密切关系.利用形式幂级数环R_∞上码C在有限链环R_i的投影码的自正交性与自对偶性来研究码C的自正交性与自对偶性,得到了两个有意义的结果.展开更多
设U_(en)和V_(en)是广Lucas数,用发生函数的方法得到方幂和sum from k=1 to n(U~R_(ek)和sum from k=1 to n(U~_(-ek)),以及正负相间方幂和sum from k=1 to n((-1)~kU~r_(ek))和sum from k=1 to n((-1)~kU~r_(-ek))的计算公式.
文摘形式幂级数环R_∞=F[[γ]]={sum from l=0 to a_lγ~l|a_l∈F}与有限链环R_i={a_0+a_1γ+…+a_(i-1)γ^(i-1)|a_i∈F}的码的投影与提升有密切关系.利用形式幂级数环R_∞上码C在有限链环R_i的投影码的自正交性与自对偶性来研究码C的自正交性与自对偶性,得到了两个有意义的结果.
文摘设U_(en)和V_(en)是广Lucas数,用发生函数的方法得到方幂和sum from k=1 to n(U~R_(ek)和sum from k=1 to n(U~_(-ek)),以及正负相间方幂和sum from k=1 to n((-1)~kU~r_(ek))和sum from k=1 to n((-1)~kU~r_(-ek))的计算公式.