In recent years, rapid development of tissue engineering technology provides possibilities for the construction of artificial tissues or organs. In construction of engineered kidneys, researchers used native decellula...In recent years, rapid development of tissue engineering technology provides possibilities for the construction of artificial tissues or organs. In construction of engineered kidneys, researchers used native decellularized extracellular matrix(ECM) as the scaffolds to recellularization. However, thrombosis has been a great issue that hinders the progress of transplantation in vivo. In this study, heparin was immobilized to the collagen part of decellularized scaffold with collagen-binding peptide(CBP). Through the anticoagulant and endothelial cell reperfusion experiments, it can be demonstrated that the heparinized scaffolds absorbed less platelets and red blood cells which can effectively reduce the formation of thrombosis. Moreover, it is conducive to longterm adhesion of endothelial cells which is important for the formation of subsequent vascularization. Taken together, our results reveal that the whole kidney can be modified by CBP-heparin composite to reduce the thrombosis and provide the better conditions for neovascularization.展开更多
Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- ...Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of:(1) the in-situ stress ratio;(2) internal friction angle of random fractures;(3) cohesion of random fractures;(4) operational variables such as injection rate; and(5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.展开更多
基金supported by grants from the National Key Research and Development Program of China (2016YFC1101400, 2016YFC1102903)the National Natural Science Foundation of China (31670995, 81470679)
文摘In recent years, rapid development of tissue engineering technology provides possibilities for the construction of artificial tissues or organs. In construction of engineered kidneys, researchers used native decellularized extracellular matrix(ECM) as the scaffolds to recellularization. However, thrombosis has been a great issue that hinders the progress of transplantation in vivo. In this study, heparin was immobilized to the collagen part of decellularized scaffold with collagen-binding peptide(CBP). Through the anticoagulant and endothelial cell reperfusion experiments, it can be demonstrated that the heparinized scaffolds absorbed less platelets and red blood cells which can effectively reduce the formation of thrombosis. Moreover, it is conducive to longterm adhesion of endothelial cells which is important for the formation of subsequent vascularization. Taken together, our results reveal that the whole kidney can be modified by CBP-heparin composite to reduce the thrombosis and provide the better conditions for neovascularization.
基金supported by the National Natural Science Foundation of China(Grant Nos.4122790141330643&41502294)+2 种基金China Postdoctoral Science Foundation Funded Project(Grants No.2015M571118)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB10030000XDB10030300&XDB10050400)
文摘Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of:(1) the in-situ stress ratio;(2) internal friction angle of random fractures;(3) cohesion of random fractures;(4) operational variables such as injection rate; and(5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.