期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
红糖生姜果脯微波干燥工艺研究 被引量:7
1
作者 傅锋 刘绍军 +1 位作者 许高升 王晶晶 《食品研究与开发》 CAS 北大核心 2013年第24期169-174,共6页
对红糖生姜果脯的微波干燥工艺参数进行了初步研究,为生姜制品的开发、产品营养保健价值的充分保持和生姜产品的丰富以及微波技术工业化的应用提供参考。试验通过单因素及正交试验探讨了不同干燥处理条件对红糖生姜果脯的脱水率、感官... 对红糖生姜果脯的微波干燥工艺参数进行了初步研究,为生姜制品的开发、产品营养保健价值的充分保持和生姜产品的丰富以及微波技术工业化的应用提供参考。试验通过单因素及正交试验探讨了不同干燥处理条件对红糖生姜果脯的脱水率、感官品质等的影响,得到了红糖生姜果脯微波干燥的最优工艺参数即干燥方式间歇式干燥、微波功率320 W、装载量90 g、干燥时间6 min,此时所得产品试样感官质量较好,呈半透明状、膨化轻微、不焦化,色泽均匀、有光泽,组织饱满、有韧性,口感纯正、姜的辣味和红糖的香味适中。 展开更多
关键词 红糖 生姜 果脯 微波干燥工艺参数
下载PDF
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
2
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部