Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in d...Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.展开更多
To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the ...To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.展开更多
A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equatio...A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equations formulation for closing the differential turbulent mass transfer equation with improvement by considering the vapor injected from the sieve hole to be three dimensional. The predicted concentration distributions by using proposed model were checked by experimental work conducted on a sieve tray simulator of 1.2 meters in diameter for desorbing the dissolved oxygen in the feed water by blowing air. The model predictions were confirmed by the experimental measurement. The validation of the proposed model was further tested by comparing the simulated result with the performance of an industrial scale sieve tray distillation column reported by Kunesh et al. for the stripping of toluene from its water solution. The predicted outlet concentration of each tray and the Murphree tray efficiencies under different operating conditions were in agreement with the published data. The simulated turbulent mass transfer diffusivity on each tray was within the range of the experimental result in the same sieve column reported by Cai et al. In addition, the prediction of the influence of sieve tray structure on the tray efficiency by using the proposed model was demonstrated.展开更多
This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercompute...This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercomputer Center in Tianjin, China, on its Tianhe-lA supercomputer platform. A series of three- model-day simulations were carried out with standard Aqua Planet Experiment (APE) designed within FAMIL to obtain the time stamp for the calculation of model speed, simulation cost, and model 1/O efficiency. The results of the simulation demonstrate that FAMIL has remarkable scalability below 3456 and 6144 cores, and the lowest simulation costs are 1536 and 3456 cores for 12.5 km and 6.25 krn resolutions, respectively. Furthermore, FAMIL has excellent I/O scalability and an efficiency of more than 80% on 6 I/Os and more than 99% on 1536 I/Os.展开更多
A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The st...A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The structure and process of this network is clear. Fuzzy rules (knowledge) are expressed in the model explicitly, and can be self-adjusted by learning from samples. Genetic algorithm (GA) is employed as the learning algorithm to train the network, and makes the training of the model efficient. This model is a self-learning and self-adaptive system with a rule set revised by training.展开更多
基金Project (09001232) supported by the Doctoral Foundation of Henan University of Science and Technology,China
文摘Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.
基金Projects(11832013,51878350)supported by the National Natural Science Foundation of ChinaProject(B200201063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(BK20180433)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.
基金Supported by the National lqatural Science Foundation of China (20736005).
文摘A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equations formulation for closing the differential turbulent mass transfer equation with improvement by considering the vapor injected from the sieve hole to be three dimensional. The predicted concentration distributions by using proposed model were checked by experimental work conducted on a sieve tray simulator of 1.2 meters in diameter for desorbing the dissolved oxygen in the feed water by blowing air. The model predictions were confirmed by the experimental measurement. The validation of the proposed model was further tested by comparing the simulated result with the performance of an industrial scale sieve tray distillation column reported by Kunesh et al. for the stripping of toluene from its water solution. The predicted outlet concentration of each tray and the Murphree tray efficiencies under different operating conditions were in agreement with the published data. The simulated turbulent mass transfer diffusivity on each tray was within the range of the experimental result in the same sieve column reported by Cai et al. In addition, the prediction of the influence of sieve tray structure on the tray efficiency by using the proposed model was demonstrated.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110303)the National Basic Research Program of China (973Program, Grant Nos. 2012CB417203 and 2010CB950404)+1 种基金the National High Technology Research and Development Program of China (863 Program, Grant No. 2010AA012305)the National Natural Science Foundation of China (Grant No. 41023002)
文摘This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercomputer Center in Tianjin, China, on its Tianhe-lA supercomputer platform. A series of three- model-day simulations were carried out with standard Aqua Planet Experiment (APE) designed within FAMIL to obtain the time stamp for the calculation of model speed, simulation cost, and model 1/O efficiency. The results of the simulation demonstrate that FAMIL has remarkable scalability below 3456 and 6144 cores, and the lowest simulation costs are 1536 and 3456 cores for 12.5 km and 6.25 krn resolutions, respectively. Furthermore, FAMIL has excellent I/O scalability and an efficiency of more than 80% on 6 I/Os and more than 99% on 1536 I/Os.
基金Funded by the Open Research Fund Program of GIS Laboratory of Wuhan University (No. wd200609).
文摘A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The structure and process of this network is clear. Fuzzy rules (knowledge) are expressed in the model explicitly, and can be self-adjusted by learning from samples. Genetic algorithm (GA) is employed as the learning algorithm to train the network, and makes the training of the model efficient. This model is a self-learning and self-adaptive system with a rule set revised by training.