选择双列直插塑料封装的CMOS(Complementary Metal Oxide Semiconductor)器件CC4069 六反相器作为研究对象,采用蒙特卡罗方法分析了器件吸收剂量与标称辐照剂量的差异,结合电离总剂量效应敏感参数阈电压的测量,分析评估了不满足次级电...选择双列直插塑料封装的CMOS(Complementary Metal Oxide Semiconductor)器件CC4069 六反相器作为研究对象,采用蒙特卡罗方法分析了器件吸收剂量与标称辐照剂量的差异,结合电离总剂量效应敏感参数阈电压的测量,分析评估了不满足次级电子平衡条件对器件敏感区吸收剂量和电离总剂量效应的影响程度,分析比较了标称辐照剂量和修正吸收剂量的PMOS(Positive channel Metal Oxide Semiconductor)和NMOS(Negativechannel Metal Oxide Semiconductor)不同偏置下的阈电压漂移变化规律。结果表明:器件敏感层中的吸收剂量只有标称辐照剂量的83.52%。次级电子不平衡下的辐照试验会影响器件的抗辐射水平考核,器件的抗辐射水平被高估了16.5%。展开更多
本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors,GFET)开展了基于10 keV-X射线的总剂量效应研究.结果表明,随累积剂量的增大,不同结构GFET的狄拉克电压V_(Dirac)和载流子迁移率μ不断退化;相比于背栅型...本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors,GFET)开展了基于10 keV-X射线的总剂量效应研究.结果表明,随累积剂量的增大,不同结构GFET的狄拉克电压V_(Dirac)和载流子迁移率μ不断退化;相比于背栅型GFET,顶栅型GFET的辐射损伤更加严重;尺寸对GFET器件的总剂量效应决定于器件结构;200μm×200μm尺寸的顶栅型GFET损伤最严重,而背栅型GFET是50μm×50μm尺寸的器件损伤最严重.研究表明:对于顶栅型GFET,辐照过程中在栅氧层中形成的氧化物陷阱电荷的积累是V_(Dirac)和μ降低的主要原因.背栅型GFET不仅受到辐射在栅氧化层中产生的陷阱电荷的影响,还受到石墨烯表面的氧吸附的影响.在此基础上,结合TCAD仿真工具实现了顶栅器件氧化层中辐射产生的氧化物陷阱电荷对器件辐射响应规律的仿真.相关研究结果对于石墨烯器件的抗辐照加固研究具有重大意义.展开更多
基于标准Bipolar-CMOS-DMOS(BCD)工艺研制的抗辐射电源管理芯片无法满足航天应用要求,抗辐射BCD工艺的发展严重制约了我国在航天领域核心器件的研制。与CMOS器件相比,LDMOS器件具有更高的工作电压和更多的介质结构,更易受到总剂量问题...基于标准Bipolar-CMOS-DMOS(BCD)工艺研制的抗辐射电源管理芯片无法满足航天应用要求,抗辐射BCD工艺的发展严重制约了我国在航天领域核心器件的研制。与CMOS器件相比,LDMOS器件具有更高的工作电压和更多的介质结构,更易受到总剂量问题的困扰。本文基于标准0.18μm BCD工艺,开展了18 V NLDMOS器件总剂量辐射效应研究,提出了一种总剂量辐射加固工艺技术。采用离子注入和材料改性技术工艺,提高了浅槽隔离场区边缘的P型硅反型阈值,从而增强了NLDMOS器件的抗辐射能力。通过对比实验表明,当辐照总剂量为100 krad(Si)时,加固的NLDMOS器件的抗辐射性能明显优于非加固的器件。通过总剂量辐射加固工艺技术的研究,可有效提高器件的抗总剂量辐射能力,避免设计加固造成芯片面积增大的问题。展开更多
文摘选择双列直插塑料封装的CMOS(Complementary Metal Oxide Semiconductor)器件CC4069 六反相器作为研究对象,采用蒙特卡罗方法分析了器件吸收剂量与标称辐照剂量的差异,结合电离总剂量效应敏感参数阈电压的测量,分析评估了不满足次级电子平衡条件对器件敏感区吸收剂量和电离总剂量效应的影响程度,分析比较了标称辐照剂量和修正吸收剂量的PMOS(Positive channel Metal Oxide Semiconductor)和NMOS(Negativechannel Metal Oxide Semiconductor)不同偏置下的阈电压漂移变化规律。结果表明:器件敏感层中的吸收剂量只有标称辐照剂量的83.52%。次级电子不平衡下的辐照试验会影响器件的抗辐射水平考核,器件的抗辐射水平被高估了16.5%。
文摘本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors,GFET)开展了基于10 keV-X射线的总剂量效应研究.结果表明,随累积剂量的增大,不同结构GFET的狄拉克电压V_(Dirac)和载流子迁移率μ不断退化;相比于背栅型GFET,顶栅型GFET的辐射损伤更加严重;尺寸对GFET器件的总剂量效应决定于器件结构;200μm×200μm尺寸的顶栅型GFET损伤最严重,而背栅型GFET是50μm×50μm尺寸的器件损伤最严重.研究表明:对于顶栅型GFET,辐照过程中在栅氧层中形成的氧化物陷阱电荷的积累是V_(Dirac)和μ降低的主要原因.背栅型GFET不仅受到辐射在栅氧化层中产生的陷阱电荷的影响,还受到石墨烯表面的氧吸附的影响.在此基础上,结合TCAD仿真工具实现了顶栅器件氧化层中辐射产生的氧化物陷阱电荷对器件辐射响应规律的仿真.相关研究结果对于石墨烯器件的抗辐照加固研究具有重大意义.
文摘基于标准Bipolar-CMOS-DMOS(BCD)工艺研制的抗辐射电源管理芯片无法满足航天应用要求,抗辐射BCD工艺的发展严重制约了我国在航天领域核心器件的研制。与CMOS器件相比,LDMOS器件具有更高的工作电压和更多的介质结构,更易受到总剂量问题的困扰。本文基于标准0.18μm BCD工艺,开展了18 V NLDMOS器件总剂量辐射效应研究,提出了一种总剂量辐射加固工艺技术。采用离子注入和材料改性技术工艺,提高了浅槽隔离场区边缘的P型硅反型阈值,从而增强了NLDMOS器件的抗辐射能力。通过对比实验表明,当辐照总剂量为100 krad(Si)时,加固的NLDMOS器件的抗辐射性能明显优于非加固的器件。通过总剂量辐射加固工艺技术的研究,可有效提高器件的抗总剂量辐射能力,避免设计加固造成芯片面积增大的问题。