期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于位置交互感知网络的多任务情绪原因对抽取方法
1
作者 付明睿 李卫疆 《计算机科学》 CSCD 北大核心 2024年第S02期83-91,共9页
情绪原因对抽取任务旨在同时抽取情感子句和原因子句。已有的方法把情绪原因对抽取看作情绪抽取、原因抽取和情绪原因对抽取3个独立的任务,不能有效捕捉到任务之间的联系。此外,现有的两阶段模型存在误差传播问题,并且情绪子句和原因子... 情绪原因对抽取任务旨在同时抽取情感子句和原因子句。已有的方法把情绪原因对抽取看作情绪抽取、原因抽取和情绪原因对抽取3个独立的任务,不能有效捕捉到任务之间的联系。此外,现有的两阶段模型存在误差传播问题,并且情绪子句和原因子句间相对位置分布不平衡。文中提出了一个新的基于BERT、情感词典和位置感知交互模块的情绪原因对抽取模型MK-BERT。该模型首先用情感词典增强的BERT进行文本编码;其次,为了解决标签位置不平衡问题,根据情感子句和原因子句间的相对距离设计位置感知交互模块,以捕捉位置信息并构建情绪原因对的特征;最后,通过情绪预测模块和原因预测模块间交互编码,充分挖掘多个任务间的共享信息。在中文情绪原因对抽取数据集上进行实验,结果表明,所提模型可以有效地抽取情绪原因对,并且在位置不平衡样本上取得良好性能。 展开更多
关键词 情感分析 情绪原因对抽取 多任务学习 情感词典 位置感知
下载PDF
Sen-BiGAT-Inter:情绪原因对抽取方法
2
作者 冯浩甲 李旸 +2 位作者 王素格 符玉杰 慕永利 《中文信息学报》 CSCD 北大核心 2022年第5期153-162,共10页
情绪原因对抽取任务是将情绪子句与原因子句同时抽取。针对该任务,现有模型的编码层未考虑强化情感词语义表示,且仅使用单一图注意力网络,因此,该文提出了一个使用情感词典、图网络和多头注意力的情绪原因对抽取方法(Sen-BiGAT-Inter)... 情绪原因对抽取任务是将情绪子句与原因子句同时抽取。针对该任务,现有模型的编码层未考虑强化情感词语义表示,且仅使用单一图注意力网络,因此,该文提出了一个使用情感词典、图网络和多头注意力的情绪原因对抽取方法(Sen-BiGAT-Inter)。该方法首先利用情感词典与子句中的情感词汇匹配,并将匹配的情感词汇与该子句进行合并,再使用预训练模型BERT(Bidirectional Encoder Representation from Transformers)对句子进行表示。其次,建立两个图注意力网络,分别学习情绪子句和原因子句表示,进而获取候选情绪原因对的表示。在此基础上,应用多头注意力交互机制学习候选情绪原因对的全局信息,同时结合相对位置信息得到候选情绪原因对的表示,用于实现情绪原因对的抽取。在中文情绪原因对抽取数据集上的实验结果显示,相比目前最优的结果,该文所提出的模型在F;值上提升约1.95。 展开更多
关键词 情绪原因对抽取 情感词典 图注意力网络
下载PDF
面向中文微博的情绪-原因对抽取数据集构建及分析研究
3
作者 陈仲豪 朱军楠 +2 位作者 周玉 向露 宗成庆 《中文信息学报》 CSCD 北大核心 2024年第10期135-143,共9页
情绪-原因对抽取(ECPE)任务旨在从给定文档中同步抽取情绪子句及其对应的原因子句,该任务在新闻领域得到了广泛研究。然而,社交媒体领域ECPE任务的研究相对较少,主要原因在于缺少适用的数据集。与新闻领域相比,该领域更具挑战性和实用性... 情绪-原因对抽取(ECPE)任务旨在从给定文档中同步抽取情绪子句及其对应的原因子句,该任务在新闻领域得到了广泛研究。然而,社交媒体领域ECPE任务的研究相对较少,主要原因在于缺少适用的数据集。与新闻领域相比,该领域更具挑战性和实用性:(1)在社交媒体领域,情绪表达更加多样化、非规范化;(2)以往的研究忽略了情绪造成的主观意图,其对于决策分析有很重要的价值。针对以上问题,该文首先构建了一个面向中文微博的情绪原因抽取数据集,并对其中5009条数据进行了人工标注。该数据集具备以下特点:(1)收录了隐喻、反讽等形式的情绪表达,标注了细粒度的情绪类别;(2)定义了三种类型的意图,并标注了意图子句;(3)当前规模最大的中文情绪-原因对抽取数据集。结合数据集特点,该文提出一种融合情绪类别和意图信息的情绪-原因对抽取方法,并将该方法与多个ECPE主流方法进行了比较分析。实验结果表明,该文方法可以更有效提升社交媒体领域情绪-原因对抽取的效果。 展开更多
关键词 情绪-原因对抽取 中文社交媒体 微博数据集
下载PDF
利用异构图神经网络实现情绪-原因对的有效抽取 被引量:1
4
作者 蒲金垚 卜令梅 +3 位作者 卢永美 叶子铭 陈黎 于中华 《计算机科学》 CSCD 北大核心 2023年第1期205-212,共8页
情绪-原因对的自动抽取,是文本情感分析的新任务,旨在以子句为单位,从不带任何标注的原始文本中识别情绪表达,并确定产生相应情绪的原因,形成情绪-原因对。完成上述任务的关键是有效捕捉情绪和原因之间以及不同情绪-原因对之间的关联。... 情绪-原因对的自动抽取,是文本情感分析的新任务,旨在以子句为单位,从不带任何标注的原始文本中识别情绪表达,并确定产生相应情绪的原因,形成情绪-原因对。完成上述任务的关键是有效捕捉情绪和原因之间以及不同情绪-原因对之间的关联。针对现有研究在捕捉这些关联方面存在的粒度过粗、无法有效区分不同子句对之间因果关系的相互影响等不足,提出了一种基于异构图神经网络的情绪-原因对抽取方法。该方法首先构建以子句和子句对为顶点的异构图,其中子句和子句对之间以及不同的子句对之间存在不同类型的边,用于捕捉各种细粒度的关联;然后采用带有注意力机制的异构图神经网络顶点表达更新算法,对子句和子句对的初始表达进行迭代更新;接着将更新后的子句对表达输入到二元分类器,通过该分类器判断相应的子句对是否存在情绪-原因关系。在情绪-原因对抽取任务的基准数据集上进行的实验表明,所提基于异构图神经网络的方法具有稳定的效果提升,在F1值上比当前最好的方法高0.85%;如果底层编码器(用于得到初始的子句表达和子句对表达)采用BERT,F1值可以达73.12%,也优于底层编码器同样采用BERT的现有最新算法。 展开更多
关键词 情感分析 情绪原因对抽取 异构图神经网络 图神经网络
下载PDF
基于多标签Seq2Seq模型的情绪-原因对提取模型
5
作者 张思阳 魏苏波 +3 位作者 孙争艳 张顺香 朱广丽 吴厚月 《数据分析与知识发现》 CSSCI CSCD 北大核心 2023年第2期86-96,共11页
【目的】提出基于多标签Seq2Seq模型的情绪-原因对提取方法,提高情绪-原因对抽取效果。【方法】使用BERT预训练得到语义丰富的词向量,通过Bi-GRU和LSTM进行编码分别得到文本的全局特征和局部特征,引入混合注意力机制实现二者的融合,提... 【目的】提出基于多标签Seq2Seq模型的情绪-原因对提取方法,提高情绪-原因对抽取效果。【方法】使用BERT预训练得到语义丰富的词向量,通过Bi-GRU和LSTM进行编码分别得到文本的全局特征和局部特征,引入混合注意力机制实现二者的融合,提高文本语义特征捕获的完整度。【结果】相较于FSS-GCN模型,本文模型对情绪-原因对的联合抽取F1值在两个数据集上分别提升0.98个百分点和11.60个百分点,情绪抽取子任务分别提升0.87个百分点和1.10个百分点,原因抽取子任务分别提升0.79个百分点和2.31个百分点。【局限】模型主要考虑显式情绪-原因对,未针对隐式情绪-原因对进行探讨。【结论】本文提出的模型能提高情绪-原因对抽取效果。 展开更多
关键词 情绪-原因对抽取 多标签 Seq2Seq模型 BERT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部