By deriving the stress concentration factor of theestimation approach for residual fatigue life’ an estimationapproach for structure crack propagation based on multiplefactors correction is proposed. Then’ the quant...By deriving the stress concentration factor of theestimation approach for residual fatigue life’ an estimationapproach for structure crack propagation based on multiplefactors correction is proposed. Then’ the quantitativeexpression among the structure factor’ stress ratio’ loadingtype’ the manufacture processing factor and the crackpropagation is achieved. The proposed approach iimplemented in a case study for an instance structure’ and theinfluences of correction factors on the crack propagation areanalyzed. Meanwhile’ the probabilistic method based onWeibull distribution probability density function is selected toevaluate the precision of the corrected estimation approach’and the probability density of results is calculated by theprobability density function. It is shown that the resultsestimated by the corrected approach is more precise than thoseestimated by the fracture mechanics, and they are closer to thetest data.展开更多
基金The National Natural Science Foundation of China(No.51675098)Chinese Specialized Research Foundation for Doctoral Program of Higher Education(No.20130092110003)Graduate Student Research Innovation Foundation of Jiangsu Province(No.KYLX15_0059)
文摘By deriving the stress concentration factor of theestimation approach for residual fatigue life’ an estimationapproach for structure crack propagation based on multiplefactors correction is proposed. Then’ the quantitativeexpression among the structure factor’ stress ratio’ loadingtype’ the manufacture processing factor and the crackpropagation is achieved. The proposed approach iimplemented in a case study for an instance structure’ and theinfluences of correction factors on the crack propagation areanalyzed. Meanwhile’ the probabilistic method based onWeibull distribution probability density function is selected toevaluate the precision of the corrected estimation approach’and the probability density of results is calculated by theprobability density function. It is shown that the resultsestimated by the corrected approach is more precise than thoseestimated by the fracture mechanics, and they are closer to thetest data.