针对数据稀疏性问题对于传统协同过滤推荐带来的影响,提出基于项目属性和局部优化的协同过滤推荐算法(collaborative filtering recommendation algorithm based on item attribute and local optimization,简称CUCF).算法首先改进jac...针对数据稀疏性问题对于传统协同过滤推荐带来的影响,提出基于项目属性和局部优化的协同过滤推荐算法(collaborative filtering recommendation algorithm based on item attribute and local optimization,简称CUCF).算法首先改进jaccard系数来优化评分的项目相似性;其次引入拉普拉斯平滑方法对基于项目属性的项目相似性进行优化;最后结合两方面的相似性结果,并且利用局部优化方法选择目标的近邻对象作为推荐群.实验结果表明,该算法减小了数据稀疏性对推荐结果的负面影响,有效地降低了预测结果的平均绝对误差MAE.实验进一步对比了其他4种不同推荐方法,预测精度提高7.1%-15.5%,从而证明了CUCF方法在预测准确率方面能够取得较好的效果。展开更多
文摘针对数据稀疏性问题对于传统协同过滤推荐带来的影响,提出基于项目属性和局部优化的协同过滤推荐算法(collaborative filtering recommendation algorithm based on item attribute and local optimization,简称CUCF).算法首先改进jaccard系数来优化评分的项目相似性;其次引入拉普拉斯平滑方法对基于项目属性的项目相似性进行优化;最后结合两方面的相似性结果,并且利用局部优化方法选择目标的近邻对象作为推荐群.实验结果表明,该算法减小了数据稀疏性对推荐结果的负面影响,有效地降低了预测结果的平均绝对误差MAE.实验进一步对比了其他4种不同推荐方法,预测精度提高7.1%-15.5%,从而证明了CUCF方法在预测准确率方面能够取得较好的效果。