The evolution of chaotic state of Iarenz system on the fa- miliar parameter space cabit is analyzed. Based on the principle of chaos suppression with ntmrestmaat parametric drive, the trodel of detecting weak periodic...The evolution of chaotic state of Iarenz system on the fa- miliar parameter space cabit is analyzed. Based on the principle of chaos suppression with ntmrestmaat parametric drive, the trodel of detecting weak periodic signals in strong noise is Imilt. According to the parametric equivalent relationship obtained using averaging method and rmtmmlization method, the critical values of detection parameters are determined, which lead to a sudden change of system dynamical behavior from periodic orbit to stable equilibritma point. Sinmlation results show that weak periodic signals in strong noise can be detected acomately with the proposed system. The method can obtain aoawate rane of parameter threshold through tlxxtetical analysis, and the detection criterion is rather simple, which is more convenieat for automatic detection.展开更多
A Michelson interferometer based sensor, to monitor the displacement and vibration of a surface, is presented. The interference signals detected in quadrature are processed using analog electronics to find the directi...A Michelson interferometer based sensor, to monitor the displacement and vibration of a surface, is presented. The interference signals detected in quadrature are processed using analog electronics to find the direction of the motion of a vibrating surface in real-time. The complete instrumentation and signal processing are implemented for the interpretation of the amplitude as well as positive and negative excursion of the vibration cycles. This new technique is simpler as compared to the techniques commonly used in the interferometer based vibration sensors. Using this technique, we have measured mechanical vibrations having a magnitude of the order of nanometers and frequency in the range of 50Hz to 500Hz. By making small changes in the electronic circuit, the technique can be implemented for the extended range of the vibration frequencies and amplitude.展开更多
This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wande...This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wander and random noise were identified in the decomposed monotonic trend and intrinsic mode functions (IMF) using the modeling method of probability density function and the confidence limit criterion.Then, the fluctuation parts in the signal were detected by the signal method turning for count. The results demonstrated that the quality of reconstructed signal can be greatly improved, with the removal of the baseline wander(adaptive trend) and the Gaussian distributed random noise. By detecting the turn signals in the artifact-free signal, the pathological segments related to chondrom alacia patellae can be effectively localized with the beginning and ending points of the span of turn signals.展开更多
Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background...Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background noises. Multiwavelet is a powerful tool used to conduct non-stationary fault feature extraction. However, the existing predetermined multiwavelet bases are independ- ent of the dynamic response signals. In this paper, a constructing technique of vibration data-driven maximal-overlap adaptive multiwavelet (MOAMW) is proposed for enhancing the extracting performance of fault symptom. It is able to derive an opti- mal multiwavelet basis that best matches the critical non-stationary and transient fault signatures via genetic algorithm. In this technique, two-scale similarity transform (TST) and symmetric lifting (SymLift) scheme are combined to gain high designing freedom for matching the critical faulty vibration contents in vibration signals based on the maximal fitness objective. TST and SymLift can add modifications to the initial multiwavelet by changing the approximation order and vanishing moment of mul- tiwavelet, respectively. Moreover, the beneficial feature of the MOAWM lies in that the maximal-overlap filterbank structure can enhance the periodic and transient characteristics of the sensor signals and preserve the time and frequency analyzing res- olution during the decomposition process. The effectiveness of the proposed technique is validated via a numerical simulation as well as a rolling element beating with an outer race scrape and a gearbox with rub fault.展开更多
文摘The evolution of chaotic state of Iarenz system on the fa- miliar parameter space cabit is analyzed. Based on the principle of chaos suppression with ntmrestmaat parametric drive, the trodel of detecting weak periodic signals in strong noise is Imilt. According to the parametric equivalent relationship obtained using averaging method and rmtmmlization method, the critical values of detection parameters are determined, which lead to a sudden change of system dynamical behavior from periodic orbit to stable equilibritma point. Sinmlation results show that weak periodic signals in strong noise can be detected acomately with the proposed system. The method can obtain aoawate rane of parameter threshold through tlxxtetical analysis, and the detection criterion is rather simple, which is more convenieat for automatic detection.
文摘A Michelson interferometer based sensor, to monitor the displacement and vibration of a surface, is presented. The interference signals detected in quadrature are processed using analog electronics to find the direction of the motion of a vibrating surface in real-time. The complete instrumentation and signal processing are implemented for the interpretation of the amplitude as well as positive and negative excursion of the vibration cycles. This new technique is simpler as compared to the techniques commonly used in the interferometer based vibration sensors. Using this technique, we have measured mechanical vibrations having a magnitude of the order of nanometers and frequency in the range of 50Hz to 500Hz. By making small changes in the electronic circuit, the technique can be implemented for the extended range of the vibration frequencies and amplitude.
基金The Fundamental Research Funds for the Central Universities of Chinagrant number:2010121061 and 2010121062+3 种基金The Natural Science Foundation of Fujiangrant number:2011J01371The National Natural Science Foundation of Chinagrant number:81101115
文摘This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wander and random noise were identified in the decomposed monotonic trend and intrinsic mode functions (IMF) using the modeling method of probability density function and the confidence limit criterion.Then, the fluctuation parts in the signal were detected by the signal method turning for count. The results demonstrated that the quality of reconstructed signal can be greatly improved, with the removal of the baseline wander(adaptive trend) and the Gaussian distributed random noise. By detecting the turn signals in the artifact-free signal, the pathological segments related to chondrom alacia patellae can be effectively localized with the beginning and ending points of the span of turn signals.
基金supported by the National Natural Science Foundation of China(Grant No.51275384)the Key Project of National Natural Science Foundation of China(Grant No.51035007)+1 种基金the National Basic Research Program of China(Grant No.2009CB724405)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110201130001)
文摘Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background noises. Multiwavelet is a powerful tool used to conduct non-stationary fault feature extraction. However, the existing predetermined multiwavelet bases are independ- ent of the dynamic response signals. In this paper, a constructing technique of vibration data-driven maximal-overlap adaptive multiwavelet (MOAMW) is proposed for enhancing the extracting performance of fault symptom. It is able to derive an opti- mal multiwavelet basis that best matches the critical non-stationary and transient fault signatures via genetic algorithm. In this technique, two-scale similarity transform (TST) and symmetric lifting (SymLift) scheme are combined to gain high designing freedom for matching the critical faulty vibration contents in vibration signals based on the maximal fitness objective. TST and SymLift can add modifications to the initial multiwavelet by changing the approximation order and vanishing moment of mul- tiwavelet, respectively. Moreover, the beneficial feature of the MOAWM lies in that the maximal-overlap filterbank structure can enhance the periodic and transient characteristics of the sensor signals and preserve the time and frequency analyzing res- olution during the decomposition process. The effectiveness of the proposed technique is validated via a numerical simulation as well as a rolling element beating with an outer race scrape and a gearbox with rub fault.