采用湿法高能球磨和高温固相的方法,合成了不同Ti含量掺杂的锂离子电池正极材料磷酸铁锂,并通过粉末X射线衍射(XRD)、扫描电镜(SEM)、等离子电感耦合(ICP)、碳硫测试仪和电性能测试对该材料进行表征和测试。结果表明,Ti掺杂并不影响磷...采用湿法高能球磨和高温固相的方法,合成了不同Ti含量掺杂的锂离子电池正极材料磷酸铁锂,并通过粉末X射线衍射(XRD)、扫描电镜(SEM)、等离子电感耦合(ICP)、碳硫测试仪和电性能测试对该材料进行表征和测试。结果表明,Ti掺杂并不影响磷酸铁锂材料的晶体结构;随着Ti含量的升高,一次颗粒明显变小;碳含量逐渐升高。电化学性能测试表明,在0.2 C和20 C下的最高放电容量能达到163 m Ah g^(-1)和118 m Ah g^(-1),验证了Ti离子主要对磷酸铁锂的高倍率性能产生较为严重的影响,其可广泛应用于高功率领域的电池系统中。展开更多
以氧化铕(Eu_2O_3)和氧化锌(ZnO)为原材料,采用固相合成法合成了Zn Eu O粉体。通过X射线衍射(XRD)、共焦显微拉曼仪、紫外-可见(Uv-vis)光谱仪、荧光分光光度计和扫描电子显微镜(SEM)对其结构和性能进行了表征,研究了Eu掺杂摩尔比(x)对...以氧化铕(Eu_2O_3)和氧化锌(ZnO)为原材料,采用固相合成法合成了Zn Eu O粉体。通过X射线衍射(XRD)、共焦显微拉曼仪、紫外-可见(Uv-vis)光谱仪、荧光分光光度计和扫描电子显微镜(SEM)对其结构和性能进行了表征,研究了Eu掺杂摩尔比(x)对粉体晶体结构和光学性能的影响。结果表明,所制备的粉体都保持了ZnO的六方纤锌矿结构。紫外-可见吸收光谱中,Eu的加入使得粉体在紫外区的吸光度减小,而在可见光区的吸光度增大。当Eu掺杂摩尔比x=0. 02时,Eu^(3+)能很好的进入到ZnO的晶格中取代Zn^(2+)的位置,粉体结构排列比较紧密,且具有良好的发光性能。展开更多
文摘采用湿法高能球磨和高温固相的方法,合成了不同Ti含量掺杂的锂离子电池正极材料磷酸铁锂,并通过粉末X射线衍射(XRD)、扫描电镜(SEM)、等离子电感耦合(ICP)、碳硫测试仪和电性能测试对该材料进行表征和测试。结果表明,Ti掺杂并不影响磷酸铁锂材料的晶体结构;随着Ti含量的升高,一次颗粒明显变小;碳含量逐渐升高。电化学性能测试表明,在0.2 C和20 C下的最高放电容量能达到163 m Ah g^(-1)和118 m Ah g^(-1),验证了Ti离子主要对磷酸铁锂的高倍率性能产生较为严重的影响,其可广泛应用于高功率领域的电池系统中。
文摘以氧化铕(Eu_2O_3)和氧化锌(ZnO)为原材料,采用固相合成法合成了Zn Eu O粉体。通过X射线衍射(XRD)、共焦显微拉曼仪、紫外-可见(Uv-vis)光谱仪、荧光分光光度计和扫描电子显微镜(SEM)对其结构和性能进行了表征,研究了Eu掺杂摩尔比(x)对粉体晶体结构和光学性能的影响。结果表明,所制备的粉体都保持了ZnO的六方纤锌矿结构。紫外-可见吸收光谱中,Eu的加入使得粉体在紫外区的吸光度减小,而在可见光区的吸光度增大。当Eu掺杂摩尔比x=0. 02时,Eu^(3+)能很好的进入到ZnO的晶格中取代Zn^(2+)的位置,粉体结构排列比较紧密,且具有良好的发光性能。