摔倒事件严重影响老年人的生命健康,对摔倒行为进行检测可以降低老年人再次跌倒的风险,从而保证其生活能力以及提高生活质量。目前基于视觉的摔倒检测方法在实验数据集上能够取得较好的精度,但是无法很好地泛化到现实环境中,在实际应用...摔倒事件严重影响老年人的生命健康,对摔倒行为进行检测可以降低老年人再次跌倒的风险,从而保证其生活能力以及提高生活质量。目前基于视觉的摔倒检测方法在实验数据集上能够取得较好的精度,但是无法很好地泛化到现实环境中,在实际应用时往往并不符合动作判断逻辑。针对该问题,对比光流法以及基于人体姿态估计的方法,在2D人体姿态估计的基础上提出一种鲁棒的摔倒检测方法。设计一种摔倒检测优化框架,构建融合多特征与语义图卷积的检测模型,采用更贴合动作判断逻辑的训练策略对该模型进行训练,以提高摔倒检测系统在现实环境中的泛化性。在Le2i Fall Detection Dataset、UP Fall Detection Dataset和Multiple Cameras Fall Detection Dataset这3个公开数据集以及自收集数据集上进行实验,结果表明,该模型的总体检测准确率达到98.3%,基于所提优化框架与训练策略的模型配合YOLOv3和Alpha_pose实现的整体摔倒检测方法在GTX1060显卡中帧率达到约25FPS,在现实场景测试中体现出较好的鲁棒性,相较以往的基于视觉的检测方法更适合部署在实际应用环境中。展开更多
目前,基于信道状态信息(Channel State Information,CSI)的室内摔倒检测(Fall Detection,FD)系统已被证明拥有巨大潜力,但是,不同室内布局带来的多径效应的差异往往使其无法实现跨场景使用。因此,该文提出了DA-Fall(Domain-adaptive Fal...目前,基于信道状态信息(Channel State Information,CSI)的室内摔倒检测(Fall Detection,FD)系统已被证明拥有巨大潜力,但是,不同室内布局带来的多径效应的差异往往使其无法实现跨场景使用。因此,该文提出了DA-Fall(Domain-adaptive Fall),通过结合两种自适应策略的域自适应方法来改进未标记噪声信号的泛化,从而提高对目标域的检测精度。在提出的摔倒检测系统中,引入了域鉴别器和域混淆自适应层来进行对抗性训练。首先,该算法通过引入依赖于相对值的相对鉴别器来优化对抗训练,从而更好地反映域间差异。其次,将基于多核架构的最大均值差异(Multiple Kernel Maximum Mean Difference,MK-MMD)作为域对抗损失的正则化项,进一步减小域间的边缘分布距离。实验分析表明,DA-Fall取得了比WiFall,RT-Fall,SignGAN更好的效果,在原场景与新场景中分别达到了96.83%和91.03%的检测精度。展开更多
文摘摔倒事件严重影响老年人的生命健康,对摔倒行为进行检测可以降低老年人再次跌倒的风险,从而保证其生活能力以及提高生活质量。目前基于视觉的摔倒检测方法在实验数据集上能够取得较好的精度,但是无法很好地泛化到现实环境中,在实际应用时往往并不符合动作判断逻辑。针对该问题,对比光流法以及基于人体姿态估计的方法,在2D人体姿态估计的基础上提出一种鲁棒的摔倒检测方法。设计一种摔倒检测优化框架,构建融合多特征与语义图卷积的检测模型,采用更贴合动作判断逻辑的训练策略对该模型进行训练,以提高摔倒检测系统在现实环境中的泛化性。在Le2i Fall Detection Dataset、UP Fall Detection Dataset和Multiple Cameras Fall Detection Dataset这3个公开数据集以及自收集数据集上进行实验,结果表明,该模型的总体检测准确率达到98.3%,基于所提优化框架与训练策略的模型配合YOLOv3和Alpha_pose实现的整体摔倒检测方法在GTX1060显卡中帧率达到约25FPS,在现实场景测试中体现出较好的鲁棒性,相较以往的基于视觉的检测方法更适合部署在实际应用环境中。
文摘目前,基于信道状态信息(Channel State Information,CSI)的室内摔倒检测(Fall Detection,FD)系统已被证明拥有巨大潜力,但是,不同室内布局带来的多径效应的差异往往使其无法实现跨场景使用。因此,该文提出了DA-Fall(Domain-adaptive Fall),通过结合两种自适应策略的域自适应方法来改进未标记噪声信号的泛化,从而提高对目标域的检测精度。在提出的摔倒检测系统中,引入了域鉴别器和域混淆自适应层来进行对抗性训练。首先,该算法通过引入依赖于相对值的相对鉴别器来优化对抗训练,从而更好地反映域间差异。其次,将基于多核架构的最大均值差异(Multiple Kernel Maximum Mean Difference,MK-MMD)作为域对抗损失的正则化项,进一步减小域间的边缘分布距离。实验分析表明,DA-Fall取得了比WiFall,RT-Fall,SignGAN更好的效果,在原场景与新场景中分别达到了96.83%和91.03%的检测精度。