期刊文献+
共找到1,487篇文章
< 1 2 75 >
每页显示 20 50 100
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测 被引量:1
1
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量机回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
下载PDF
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测 被引量:2
2
作者 马朝君 彭巨擘 +4 位作者 袁海滨 郑光发 么长慧 章夏冰 冯早 《有色金属(冶炼部分)》 CAS 北大核心 2024年第2期1-7,共7页
锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将... 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。 展开更多
关键词 锡冶炼预测模型 模型可解释性 支持向量机回归 灰狼优化算法
下载PDF
基于优化多维支持向量机回归模型的土体参数反演
3
作者 李向海 杨玲 魏静 《公路交通科技》 CAS CSCD 北大核心 2024年第5期27-34,78,共9页
针对如何有效提高位移监测数据反演土体参数精度的问题,提出一种基于麻雀搜索算法优化多维支持向量机回归模型的土体参数反演方法。依托黄土区超深路堑边坡工程项目,采用有限差分软件FLAC3D建立边坡二维模型,并利用正交试验进行土体参... 针对如何有效提高位移监测数据反演土体参数精度的问题,提出一种基于麻雀搜索算法优化多维支持向量机回归模型的土体参数反演方法。依托黄土区超深路堑边坡工程项目,采用有限差分软件FLAC3D建立边坡二维模型,并利用正交试验进行土体参数的多因素敏感性分析以确定待反演参数。然后建立符合实际开挖情况的边坡三维开挖模型,计算不同反演参数下的模拟位移值以获得训练数据。利用麻雀搜索算法获得多维支持向量机回归模型的最优参数从而构建SSA-MSVR模型,使用训练数据训练优化模型。最后,将实际监测位移代入训练好的模型求得土体最优反演参数并分析验证反演参数的正确性。结果表明:影响边坡稳定性系数的土体参数敏感性排序前4位为老黄土的内摩擦角、红黏土的内摩擦角、老黄土的黏聚力和老黄土的弹性模量,确定了这4个参数为待反演参数;超深路堑边坡开挖完成后,边坡顶部产生沉降位移,而底部出现卸荷回弹现象;利用反演参数计算的位移模拟值与实际监测值相对误差均小于10%,证明SSA-MSVR模型应用于土体参数反演效果较好,为参数反演提供了新的思路和方法。 展开更多
关键词 道路工程 参数反演 麻雀搜索算法 多维支持向量机回归 敏感性分析 黄土边坡
原文传递
支持向量机回归算法的唐山市降水量空间插值研究 被引量:1
4
作者 张永奎 《吉林水利》 2024年第2期23-25,78,共4页
针对传统插值方法在处理小样本和非线性问题上的不足,运用支持向量机回归(SVR)算法对唐山市降水量进行空间插值研究,提出了SVR算法的解决方案,以提高降水预测的准确性。通过收集2020年唐山市32个气象站点观测数据,提取经度、纬度、经纬... 针对传统插值方法在处理小样本和非线性问题上的不足,运用支持向量机回归(SVR)算法对唐山市降水量进行空间插值研究,提出了SVR算法的解决方案,以提高降水预测的准确性。通过收集2020年唐山市32个气象站点观测数据,提取经度、纬度、经纬度乘积、海拔、坡度、坡向和GPM等参数作为特征变量,并利用SVR算法建立降水量空间插值模型。研究结果表明,SVR在解决小样本和非线性问题上具有显著优势,能够有效分析多维变量对降水量分布的影响;验证显示其插值精度R2为0.79, MAE和RMSE分别为33.57mm、39.29mm,该精度在可接受范围内。通过SVR插值法生成精确的降水量分布式信息,可为唐山市旱涝减灾、水资源利用及生态保护提供科学数据支持。 展开更多
关键词 支持向量机回归算法 空间插值 降水量
下载PDF
一种基于支持向量机回归的制氧系统寿命预估方法
5
作者 刘健民 《医疗装备》 2024年第6期28-32,共5页
随着我国老龄化程度的加深及后疫情时代大背景下国内医疗系统市场规模的不断扩大,制氧系统行业的发展进入快速扩容阶段。同时,制氧系统突发故障对吸氧人群生命与心理造成不可逆损伤的问题接踵而至。制氧行业迫切需要一种针对制氧系统寿... 随着我国老龄化程度的加深及后疫情时代大背景下国内医疗系统市场规模的不断扩大,制氧系统行业的发展进入快速扩容阶段。同时,制氧系统突发故障对吸氧人群生命与心理造成不可逆损伤的问题接踵而至。制氧行业迫切需要一种针对制氧系统寿命的预估方法,以解决制氧系统突发故障影响吸氧人群生命与财产安全的问题。该研究提出一种基于支持向量机回归(SVR)的制氧系统寿命预估方法。首先,基于SVR原理建立一种寿命预估模型,通过对某制氧系统3500h的氧浓度监测数据进行SVR训练,得到制氧系统的寿命预估模型。然后,规律选取300组氧浓度数据分别进行训练集预测和预测集预测,结果显示,该预测模型的准确性较高,且模型对预测集样本的预测结果与氧浓度监测的真实值基本保持一致。最后,对该制氧系统的吸附塔进行拆机验证,发现分子筛确有失效现象,经实际测量失效程度为6%,表明该模型可应用于制氧系统的寿命预估,并取得了良好的结果。因此,基于SVR的制氧系统寿命预估方法可以准确、有效地预估制氧系统的使用寿命,避免其突发故障,同时也为后续制氧系统的寿命预估方法提供了思路。 展开更多
关键词 支持向量机回归 制氧系统 寿命预估 传感器
下载PDF
基于支持向量机回归算法的盾构下穿市政管线参数优化研究
6
作者 王非 韩凯杰 +2 位作者 余鑫 金平 许卓淋 《广东土木与建筑》 2024年第5期65-67,共3页
随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持... 随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持向量机回归(SVMR)算法的机器学习模型,并通过优化算法反向求解得到了符合施工要求的盾构参数优化方案。研究结果表明,方法的有效性通过了数值模拟试验和工程实践的验证,能够基于已有的少量盾构参数,针对关键掘进参数如推力、刀盘转速等进行优化,并提出最优组合方案,以确保施工的安全与高效,可为类似工程提供参考。 展开更多
关键词 盾构下穿管线 支持向量机回归 反向求解 掘进参数优化
下载PDF
基于支持向量机回归的粉煤灰混凝土氯离子质量分数预测
7
作者 王龙龙 余威龙 章玉容 《浙江建筑》 2024年第3期79-83,共5页
基于自然潮差环境下粉煤灰混凝土长期暴露试验,获取了3150组自由氯离子质量分数数据,建立了基于支持向量机回归方法(Support Vector Regression,SVR)的粉煤灰混凝土中自由氯离子质量分数预测模型。该模型研究了数据预处理方法,核函数以... 基于自然潮差环境下粉煤灰混凝土长期暴露试验,获取了3150组自由氯离子质量分数数据,建立了基于支持向量机回归方法(Support Vector Regression,SVR)的粉煤灰混凝土中自由氯离子质量分数预测模型。该模型研究了数据预处理方法,核函数以及超参数优化方法对自由氯离子质量分数预测精度的影响,分析了水灰比、粉煤灰掺量、暴露时间和渗透深度4个输入参数对自由氯离子质量分数预测结果的影响大小。同时,开展基于未测参数的自由氯离子质量分数预测。结果表明:当采用归一化的数据预处理方式,并使用径向基核函数及贝叶斯优化算法时,自由氯离子质量分数预测结果最佳。当自由氯离子质量分数小于0.1%时,所构建的SVR模型得到的预测值与实际氯离子质量分数存在较大差距。 展开更多
关键词 自由氯离子质量分数 支持向量机回归 粉煤灰混凝土 预测
下载PDF
一种优化支持向量机回归算法的印刷工序损耗值预测方法
8
作者 彭来湖 孙海涛 +1 位作者 李建强 胡旭东 《软件工程》 2023年第3期36-40,5,共6页
针对印刷生产中物料需求计划的损耗值采用经验值的问题,提出一种优化支持向量机回归算法的印刷工序损耗值预测方法。通过皮尔逊相关系数量化特征值选取;采用布谷鸟搜索算法优化支持向量机回归算法的超参数选取,建立损耗预测模型;为验证... 针对印刷生产中物料需求计划的损耗值采用经验值的问题,提出一种优化支持向量机回归算法的印刷工序损耗值预测方法。通过皮尔逊相关系数量化特征值选取;采用布谷鸟搜索算法优化支持向量机回归算法的超参数选取,建立损耗预测模型;为验证模型的优越性,分别与不同的特征值选取方案、优化算法、回归算法的模型进行对比。实验结果表明该损耗预测方法具有更高泛化性和预测精度,决定系数、平均绝对百分误差、均方根误差分别为0.995、0.005、1.969,为解决后续相关问题提供了技术支持。 展开更多
关键词 印刷工序 损耗预测 皮尔逊相关系数 支持向量机回归算法 布谷鸟搜索算法
下载PDF
基于人工蜂群优化支持向量机回归的隧道塌方风险预测 被引量:4
9
作者 赵雪 顾伟红 《科学技术与工程》 北大核心 2023年第9期3997-4003,共7页
为预测隧道塌方风险等级,减少隧道塌方引起的灾害事故,建立基于人工蜂群(artificial bee colony,ABC)优化支持向量机回归(support vector machine regression,SVR)隧道塌方风险预测模型。首先,从工程地质、水文气象、设计因素、施工因素... 为预测隧道塌方风险等级,减少隧道塌方引起的灾害事故,建立基于人工蜂群(artificial bee colony,ABC)优化支持向量机回归(support vector machine regression,SVR)隧道塌方风险预测模型。首先,从工程地质、水文气象、设计因素、施工因素4个方面综合考虑,遴选13个主要影响因素,建立隧道塌方风险指标体系;其次,引入人工蜂群算法优化SVR的核参数C和惩罚参数g,解决传统SVR稳定性低的缺陷,提高模型的精确度,为验证模型性能采用相关系数(R 2)、均方误差(mean squared error,MSE)、均方根误差(root mean squared error,RMSE)评价参数对比分析;最后,以新疆北部某供水工程为研究对象,对隧道塌方风险测试样本进行预测,分别将ABC-SVR、PSO-SVR、GA-SVR及SVR模型对比分析。研究结果表明:ABC-SVR预测结果为100%,PSO-SVR预测结果为83.3%,GA-SVR和SVR均为66.67%,ABC-SVR的预测结果与实际工程结果一致性更高,可为隧道塌方风险评估提供科学的决策依据。 展开更多
关键词 隧道塌方 人工蜂群算法 支持向量机回归 相关系数 均方误差 均方根误差
下载PDF
基于支持向量机回归算法的旅游短时客流量数据预测模型 被引量:1
10
作者 顾芳芳 江可申 《自动化技术与应用》 2023年第2期14-16,55,共4页
传统的客流量数据预测模型获取的数据维数较高,难以消除冗余数据,导致预测结果误差较大。为此本文提出了基于支持向量机回归算法的旅游短时客流量数据预测模型。首先利用局部线性嵌入算法对旅游短时客流量数据样本点进行局部重构,减小... 传统的客流量数据预测模型获取的数据维数较高,难以消除冗余数据,导致预测结果误差较大。为此本文提出了基于支持向量机回归算法的旅游短时客流量数据预测模型。首先利用局部线性嵌入算法对旅游短时客流量数据样本点进行局部重构,减小重构误差,降低数据维数,并消除客流量数据中存在的噪声数据和冗余数据。然后利用支持向量机回归算法构建旅游短时客流量数据预测模型。实验结果表明:该模型预测结果的最大百分比误差、平均百分比误差和均方误差均较低,证明该模型实现了设计预期。 展开更多
关键词 支持向量机回归算法 短时客流量预测 局部线性嵌入算法 预测模型 数据降维
下载PDF
基于支持向量机回归算法陕西省降水量空间插值研究 被引量:3
11
作者 樊庆 《水利科技与经济》 2023年第9期36-40,共5页
为改善区域降水量空间插值精度,基于支持向量机回归(SVR)原理,建立降水量与环境变量之间非线性关系模型,并以陕西省为例,比较SVR模型与经典OK、IDW插值法的精度差异。结果表明,SVR模型具有良好拟合能力,陕西省降水量插值精度相比于OK和... 为改善区域降水量空间插值精度,基于支持向量机回归(SVR)原理,建立降水量与环境变量之间非线性关系模型,并以陕西省为例,比较SVR模型与经典OK、IDW插值法的精度差异。结果表明,SVR模型具有良好拟合能力,陕西省降水量插值精度相比于OK和IDW模型的R2增加14.52%、20.34%;MAE降低16.30%、8.46%,RMSE减小9.18%、15.62%。SVR对100m分辨率的栅格点进行空间预测,科学反映降水量分布信息。SVR模型通过最大化有效边界并最小化训练误差来进行回归,在降水量空间预测性插值具有良好应用潜力。 展开更多
关键词 降水量 空间插值 支持向量机回归 陕西省
下载PDF
基于小波变换与支持向量机回归的冬小麦叶面积指数估算 被引量:27
12
作者 梁栋 杨勤英 +5 位作者 黄文江 彭代亮 赵晋陵 黄林生 张东彦 宋晓宇 《红外与激光工程》 EI CSCD 北大核心 2015年第1期335-340,共6页
叶面积指数(LAI)是作物长势诊断及产量预测的重要参数。通过对冬小麦采样点的高光谱曲线进行连续小波变换(CWT),然后利用小波系数与LAI建立支持向量机回归(SVR)模型,实现冬小麦不同生育时期的叶面积指数估算。通过对所研究方法与选取的... 叶面积指数(LAI)是作物长势诊断及产量预测的重要参数。通过对冬小麦采样点的高光谱曲线进行连续小波变换(CWT),然后利用小波系数与LAI建立支持向量机回归(SVR)模型,实现冬小麦不同生育时期的叶面积指数估算。通过对所研究方法与选取的植被指数、偏最小二乘(PLS)回归等5种方法的反演结果进行统计分析。结果表明:利用连续小波变换确定的LAI的敏感波段为680、739、802、895 nm,对应尺度分别为8、4、9和8,对应小波系数的LAI回归确定系数(R2)明显高于冠层反射率的回归确定系数;利用小波系数与LAI建立的SVR模型的反演精度最高,模型实测值与预测值的检验精度(R2)为0.86,均方根误差(RMSE)为0.43;而常用植被指数(归一化植被指数,NDVI;比值植被指数,RVI)建立的估测模型对冬小麦多个生育时期LAI反演精度最低(R2<0.76,RMSE>0.56)。因此利用连续小波变换进行数据预处理,能更好地筛选出对叶面积指数敏感的信息,LAI回归方法比较结果表明,SVR比PLS更适合于LAI的估测,通过将CWT与SVR结合(CWT-SVR)能实现不同生育时期冬小麦叶面积指数的遥感估算。 展开更多
关键词 叶面积指数(LAI) 高光谱 连续小波变换(CWT) 支持向量机回归(SVR) 偏最小二乘(PLS)
原文传递
基于支持向量机回归的城市PM_(2.5)浓度预测 被引量:27
13
作者 谢永华 张鸣敏 +1 位作者 杨乐 张恒德 《计算机工程与设计》 北大核心 2015年第11期3106-3111,共6页
为建立快速精确的PM2.5浓度预测模型,提出利用支持向量机回归(support vector regression,SVR)方法来建立PM2.5浓度预测模型。选取各大气污染物浓度以及各气象因素进行训练,对训练好的数据进行交叉验证,取得最优参数和最佳预测特征时间... 为建立快速精确的PM2.5浓度预测模型,提出利用支持向量机回归(support vector regression,SVR)方法来建立PM2.5浓度预测模型。选取各大气污染物浓度以及各气象因素进行训练,对训练好的数据进行交叉验证,取得最优参数和最佳预测特征时间跨度,建立最优PM2.5浓度的预测模型。基于5个城市的实验结果表明,该方法具有普适性及实际应用意义,能够自适应地调整机器学习最佳参数,相比其它机器学习方法获得了更高的预测精度,为PM2.5浓度预测提供了一个简便而有效方法模型。 展开更多
关键词 空气污染 细微颗粒物 器学习 支持向量机回归 最优化方法
下载PDF
采用支持向量机回归的航班延误预测研究 被引量:39
14
作者 罗赟骞 陈志杰 +1 位作者 汤锦辉 朱永文 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第1期143-149,172,共8页
针对航班延误难以预测的问题,采用支持向量机回归方法建立航班到港延误预测模型.首先,采用相空间重构理论计算到港延误的延迟时间、嵌入维数和最大Lyapunov指数,发现到港延误时间序列存在混沌特性;将航班到港延误时间序列进行相空间重构... 针对航班延误难以预测的问题,采用支持向量机回归方法建立航班到港延误预测模型.首先,采用相空间重构理论计算到港延误的延迟时间、嵌入维数和最大Lyapunov指数,发现到港延误时间序列存在混沌特性;将航班到港延误时间序列进行相空间重构,并结合执飞该航班的航空器在上游机场的离港延误构建模型的输入向量;其次,将粒子群算法、差分进化算法和遗传算法进行比较,用于选择最优的模型参数,实验表明,差分进化算法能够以较高概率获得最优的预测模型;最后,比较该模型、单一因素预测模型和相关向量机预测模型的航班延误预测性能.结果表明,该模型的预测性能明显优于另外两种模型,能够有效预测航班延误. 展开更多
关键词 航空运输 航班延误预测 支持向量机回归 航班延误 相空间重构 差分进化算法
下载PDF
基于支持向量机回归的T-S模糊模型自组织算法及应用 被引量:11
15
作者 梁炎明 苏芳 +1 位作者 李琦 刘丁 《自动化学报》 EI CSCD 北大核心 2013年第12期2143-2149,共7页
结合模糊聚类算法和支持向量机回归算法提出了一种新的T-S模糊模型自组织算法.该算法首先利用一种改进模糊聚类算法提取模糊规则和辨识前件参数,然后将T-S模糊模型后件变换为标准线性支持向量机回归模型,并利用支持向量机回归算法辨识... 结合模糊聚类算法和支持向量机回归算法提出了一种新的T-S模糊模型自组织算法.该算法首先利用一种改进模糊聚类算法提取模糊规则和辨识前件参数,然后将T-S模糊模型后件变换为标准线性支持向量机回归模型,并利用支持向量机回归算法辨识后件参数.仿真结果表明,相比现有的自组织算法,本文提出的T-S模糊模型自组织算法在规则数较少的情况下,仍然具有较高的辨识精度和较好的泛化能力.最后,利用提出的T-S模糊模型自组织算法较好地建立了直拉硅单晶炉加热器和空气预热器的温度模型. 展开更多
关键词 T—S模糊模型 支持向量机回归 聚类 单晶炉 空气预热器
下载PDF
基于支持向量机回归的短时交通流预测模型 被引量:90
16
作者 傅贵 韩国强 +1 位作者 逯峰 许子鑫 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期71-76,共6页
将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市... 将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市交通流检测系统的数据进行实验.结果表明,文中模型的预测结果与实际数据相吻合,预测误差小于基于卡尔曼滤波的预测方法,从而验证了该模型的可行性和有效性. 展开更多
关键词 交通控制 短时交通流 预测模型 器学习 支持向量机回归
下载PDF
基于支持向量机回归的飞行载荷参数识别研究 被引量:10
17
作者 曹善成 宋笔锋 +1 位作者 殷之平 黄其青 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第4期535-539,共5页
飞行载荷参数识别是单机寿命监控中的重要技术,主要通过建立飞行参数与飞行载荷之间的转换关系,实现间接获取关键部位的载荷谱。针对飞行参数与飞行载荷之间非线性识别问题,结合飞机典型的机动动作,提出了一种改进的支持向量机回归(SVM... 飞行载荷参数识别是单机寿命监控中的重要技术,主要通过建立飞行参数与飞行载荷之间的转换关系,实现间接获取关键部位的载荷谱。针对飞行参数与飞行载荷之间非线性识别问题,结合飞机典型的机动动作,提出了一种改进的支持向量机回归(SVM-R)飞行载荷识别模型。该模型首先采用主成分分析缩减SVM-R模型输入,再利用交叉验证和遗传算法优化SVM-R模型设置参数,最后根据优化参数训练得到飞行载荷的SVM-R识别模型。通过在半滚机动动作下,飞行参数识别某一部位弯矩的实例分析,验证了优化改进的SVM-R模型对飞行载荷识别的最大残差可控制在实测载荷的20%以内,平均残差控制在实测载荷的3%以内,且优于未经优化的SVM-R模型。 展开更多
关键词 飞行载荷 飞行参数 支持向量机回归 主成分分析 遗传算法 交叉验证方法
下载PDF
基于支持向量机回归算法的电子机械制动传感器系统故障诊断 被引量:15
18
作者 吴坚 赵阳 何睿 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第5期1178-1183,共6页
在介绍电子机械制动(EMB)系统总体结构的基础上,采用支持向量机回归(SVR)方法针对EMB传感器系统进行故障诊断研究。首先应用支持向量机回归算法建立EMB传感器故障预测模型,通过电流、压力及转速传感器在空间和时间上的冗余信息产生残差... 在介绍电子机械制动(EMB)系统总体结构的基础上,采用支持向量机回归(SVR)方法针对EMB传感器系统进行故障诊断研究。首先应用支持向量机回归算法建立EMB传感器故障预测模型,通过电流、压力及转速传感器在空间和时间上的冗余信息产生残差,利用残差阈值进行故障诊断,最后进行试验验证。试验结果表明,该算法可以对EMB系统的传感器进行有效的故障诊断,不需要考虑系统的精确模型,适用于EMB这种复杂的机电系统。 展开更多
关键词 车辆工程 电子械制动 传感器 支持向量机回归算法 故障诊断
下载PDF
局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用 被引量:18
19
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2007年第11期2846-2851,共6页
当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR... 当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR中,提出一种局部LSSVR(local LSSVR,LLSSVR)的间歇过程在线建模方法。结合前一批次离线优化后的LSSVR参数,针对待预测新样本在线选择与之相关的近邻样本集并基于此进行建模。以建立青霉素发酵过程的菌体浓度为例,验证了LLSSVR算法能够从过程的第2个生产批次开始在线建立较准确的预报模型,较LSSVR有着更好的推广能力、适应性和鲁棒性。 展开更多
关键词 局部最小二乘支持向量机回归 在线建模 间歇过程 发酵
下载PDF
用于发酵过程在线建模的自适应局部最小二乘支持向量机回归方法 被引量:16
20
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2008年第8期2052-2057,共6页
提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链... 提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链激酶流加发酵过程为例,验证了所提出算法能够从过程的第2批次开始,同时对活性菌体浓度和链激酶浓度进行较准确的在线预报,较普通的局部LSSVR等建模方法具有更高的预报精度和自适应性。 展开更多
关键词 自适应局部学习 最小二乘支持向量机回归 快速留一法 在线建模 发酵过程
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部