为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第...为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。展开更多
文摘为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。