期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
猫群优化算法求解柔性作业车间调度问题 被引量:20
1
作者 姜天华 《计算机工程与应用》 CSCD 北大核心 2018年第23期259-263,270,共6页
根据柔性作业车间的生产特点,对基本猫群优化算法进行设计和改进,提出了一种改进型猫群优化算法(Improved Cat Swarm Optimization,ICSO),用于优化车间内工件的最大完工时间。算法给出了两段式个体位置编码方式和基于启发式算法的种群... 根据柔性作业车间的生产特点,对基本猫群优化算法进行设计和改进,提出了一种改进型猫群优化算法(Improved Cat Swarm Optimization,ICSO),用于优化车间内工件的最大完工时间。算法给出了两段式个体位置编码方式和基于启发式算法的种群初始化策略;采用自适应行为模式选择方法,使其能够有效协调算法全局和局部搜索;提出了基于多样化搜寻算子的搜寻模式,增强算法的全局搜索能力;提出了基于莱维飞行的跟踪模式,增强算法的局部搜索能力。此外,算法中还引入了跳跃机制,使算法性能能够得到进一步的改善。实验数据表明ICSO算法在求解FJSP问题方面具有一定的有效性。 展开更多
关键词 柔性作业车间 生产调度 最大完工时间 改进猫群优化算法
下载PDF
考虑淡水壳菜腐烂影响的长距离输水隧洞检修通风方案优化方法
2
作者 刘长欣 余红玲 +3 位作者 王晓玲 郭章潮 李沛 王佳俊 《水利学报》 北大核心 2025年第3期375-386,共12页
长距离输水隧洞检修期排水时,壁面附着的淡水壳菜会死亡腐烂并释放出大量有害气体,严重威胁检修安全。现有地下工程通风安全研究侧重于考虑通风效果的通风方案比选,难以获取兼顾通风效果和通风成本的全局最优方案,且缺乏考虑淡水壳菜腐... 长距离输水隧洞检修期排水时,壁面附着的淡水壳菜会死亡腐烂并释放出大量有害气体,严重威胁检修安全。现有地下工程通风安全研究侧重于考虑通风效果的通风方案比选,难以获取兼顾通风效果和通风成本的全局最优方案,且缺乏考虑淡水壳菜腐烂有害气体的影响。此外,基于帕累托最优准则(PO)的多目标优化方法在输出非支配解集后,需要结合多准则决策方法进行二次选择方可得到最优解,优化效率较低。针对上述问题,提出考虑淡水壳菜腐烂影响的长距离输水隧洞检修通风方案模糊逻辑多目标优化方法。首先,结合模糊隶属度函数将多个优化目标转换到相同的连续域空间,并综合处理成统一的优化指标,构建基于模糊逻辑(FL)的多目标优化数学模型,以进行兼顾通风效果与通风成本的全局寻优;然后,提出基于混沌映射和最优邻域扰动策略改进的沙漠猫群优化(ISCSO)算法求解多目标优化数学模型,避免非支配解集的二次选择,提高优化效率。性能测试和案例研究表明,本文提出的ISCSO-FL多目标优化方法在解的质量、解的鲁棒性以及计算复杂度等方面具有优越性。本文方法得到的最优方案能够满足通风安全需求,通风成本相比初始方案降低21.9%,且优化效率相比基于PO准则的多目标优化方法提高68.1%。本研究可为地下工程通风方案的设计与优化提供新思路。 展开更多
关键词 长距离输水隧洞 检修通风 淡水壳菜腐烂 多目标优化 模糊逻辑 改进沙漠猫群优化算法
下载PDF
基于改进CSO-LSTM的两相流空隙率预测研究
3
作者 刘晓 阚哲 钱宇加 《传感器与微系统》 CSCD 北大核心 2022年第7期57-60,64,共5页
空隙率是石油化工企业中非常重要的参数之一。空隙率在线测量过程中存在较大的随机性和不确定性,很难预知空隙率的变化。为了实现对空隙率的预测,提前对两相流系统进行控制和优化,提出了基于改进猫群优化(CSO)算法长短期记忆(LSTM)网络... 空隙率是石油化工企业中非常重要的参数之一。空隙率在线测量过程中存在较大的随机性和不确定性,很难预知空隙率的变化。为了实现对空隙率的预测,提前对两相流系统进行控制和优化,提出了基于改进猫群优化(CSO)算法长短期记忆(LSTM)网络的空隙率预测算法。利用LSTM善于处理时间序列型数据的特点对空隙率进行预测,在CSO中引入模拟退火(SA)算法和平均惯性权重,改善了在预测中易陷入局部最优和全局搜索能力较弱的缺点,保证了位置的收敛性。结果表明,该算法模型具有较高的预测精度和收敛速度,可以更快更精确预测空隙率的变化,克服了数据不确定且随机的难点,对提前控制和优化两相流系统具有较高的工业应用价值。 展开更多
关键词 两相流 空隙率 改进猫群优化算法 模拟退火算法 平均惯性权重 长短期记忆
下载PDF
融合OOA的改进SCSO优化算法及其应用
4
作者 邹邦杰 刘国巍 《武汉理工大学学报》 2024年第11期151-156,共6页
为了提高沙猫优化算法(Sand Cat Swarm Optimization, SCSO)的收敛速度与跳出局部最优的能力,提出一种融合鱼鹰变异的改进沙猫算法(Osprey Sand Cat Swarm Optimization, OSCSO)。首先利用Bernoulli映射初始化种群值以防陷入局部最优解... 为了提高沙猫优化算法(Sand Cat Swarm Optimization, SCSO)的收敛速度与跳出局部最优的能力,提出一种融合鱼鹰变异的改进沙猫算法(Osprey Sand Cat Swarm Optimization, OSCSO)。首先利用Bernoulli映射初始化种群值以防陷入局部最优解。其次为了增加SCSO种群的多样性和跳出局部最优的能力引入自适应高斯柯西混合变异扰动与鱼鹰优化算法(Osprey Optimization Algorithm, OOA),同时采用精英反向学习机制尝试探索反向解以加快收敛速度。最后通过8个基准函数对OSCSO算法、SCSO算法和OOA算法进行测试对比实验,其结果证明改进的SCSO算法具有SCSO算法和OOA算法的优点,并将其应用在光伏功率预测上进一步验证有效性。 展开更多
关键词 改进猫群优化算法 Bernoulli映射 高斯柯西混合变异 鱼鹰算法 精英反向学习机制
原文传递
基于优化VMD和BiLSTM的短期负荷预测
5
作者 谢国民 陆子俊 《电力系统及其自动化学报》 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进猫群优化算法 集成学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部