直流故障穿越是柔性直流输电(voltage sourced converter based high voltage direct current transmission,VSCHVDC)技术面临的重要问题之一。全桥型模块化多电平换流器(full bridge modular multilevel converter,FBMMC)能够快速清除...直流故障穿越是柔性直流输电(voltage sourced converter based high voltage direct current transmission,VSCHVDC)技术面临的重要问题之一。全桥型模块化多电平换流器(full bridge modular multilevel converter,FBMMC)能够快速清除直流侧故障,是实现直流故障穿越的理想拓扑。该文首先分析现有换流阀闭锁保护策略下电容放电阶段和换流阀闭锁阶段的等效电路,推导电容电压和电流的解析式。针对实际工程中功率模块具有恒功率负载特性,换流站闭锁期间功率模块电容电压逐渐发散并最终导致交流断路器跳闸的问题,提出一种FBMMC-HVDC的故障穿越控制保护策略。在故障穿越期间,换流器处于可控状态,能够避免电容电压发散,无需切断交直流系统连接;在故障清除后能够立即恢复正常运行,具备暂时性和永久性直流故障穿越能力。在PSCAD/EMTDC软件中构建了FBMMC-HVDC仿真模型,对比上述两种保护策略,分析两种策略各自的优缺点。展开更多
电网故障易造成并网风电场内风力发电机端电压骤变进而导致风力发电机跳闸,威胁风电场的安全运行。提出一种基于模型预测控制(Model Predictive Control,MPC)的风电场故障穿越有功无功优化控制策略。首先,基于下垂控制,根据并网点(Point...电网故障易造成并网风电场内风力发电机端电压骤变进而导致风力发电机跳闸,威胁风电场的安全运行。提出一种基于模型预测控制(Model Predictive Control,MPC)的风电场故障穿越有功无功优化控制策略。首先,基于下垂控制,根据并网点(Point of Common Coupling,PCC)电压得出故障下的风电场总有功无功参考值。其次,基于风电场的预测状态空间模型与功率-电压灵敏度计算公式,建立以最小化各风力发电机端电压波动为优化目标的基于MPC的优化问题数学模型,求解得到各风力发电机有功无功参考值。在深度故障下,协调控制静止无功发生器(Static Var Generator,SVG)补偿系统无功缺额以维持PCC电压稳定。仿真结果表明,所提控制策略能将PCC点电压与WT端电压快速有效地稳定在可行范围内,提升风电场的故障穿越能力。展开更多
以电压源换流器为接口的分布式电源(distributedgenerator,DG)的故障电流完全由其控制策略决定,其传统的等值模型通常与常规电源类似,而忽视了控制策略的影响,造成含DG配电网故障分析存在局限性,尤其对于非对称故障情况。为此,首先对DG...以电压源换流器为接口的分布式电源(distributedgenerator,DG)的故障电流完全由其控制策略决定,其传统的等值模型通常与常规电源类似,而忽视了控制策略的影响,造成含DG配电网故障分析存在局限性,尤其对于非对称故障情况。为此,首先对DG的相间短路故障穿越控制特性进行分析,针对正序分量控制的DG提出了压控电流源等值模型;在此基础上,通过建立DG输出电流与公共联接点(point of common coupling,PCC)正、负序电压之间的关系方程式,推导出不同的相间短路故障条件下PCC正序电压的求解方程组,从而建立含DG配电网相间短路故障分析精确模型。基于DIgSILENT建立含DG配电网模型,仿真结果验证了该故障分析方法的正确性。展开更多
文摘直流故障穿越是柔性直流输电(voltage sourced converter based high voltage direct current transmission,VSCHVDC)技术面临的重要问题之一。全桥型模块化多电平换流器(full bridge modular multilevel converter,FBMMC)能够快速清除直流侧故障,是实现直流故障穿越的理想拓扑。该文首先分析现有换流阀闭锁保护策略下电容放电阶段和换流阀闭锁阶段的等效电路,推导电容电压和电流的解析式。针对实际工程中功率模块具有恒功率负载特性,换流站闭锁期间功率模块电容电压逐渐发散并最终导致交流断路器跳闸的问题,提出一种FBMMC-HVDC的故障穿越控制保护策略。在故障穿越期间,换流器处于可控状态,能够避免电容电压发散,无需切断交直流系统连接;在故障清除后能够立即恢复正常运行,具备暂时性和永久性直流故障穿越能力。在PSCAD/EMTDC软件中构建了FBMMC-HVDC仿真模型,对比上述两种保护策略,分析两种策略各自的优缺点。
文摘电网故障易造成并网风电场内风力发电机端电压骤变进而导致风力发电机跳闸,威胁风电场的安全运行。提出一种基于模型预测控制(Model Predictive Control,MPC)的风电场故障穿越有功无功优化控制策略。首先,基于下垂控制,根据并网点(Point of Common Coupling,PCC)电压得出故障下的风电场总有功无功参考值。其次,基于风电场的预测状态空间模型与功率-电压灵敏度计算公式,建立以最小化各风力发电机端电压波动为优化目标的基于MPC的优化问题数学模型,求解得到各风力发电机有功无功参考值。在深度故障下,协调控制静止无功发生器(Static Var Generator,SVG)补偿系统无功缺额以维持PCC电压稳定。仿真结果表明,所提控制策略能将PCC点电压与WT端电压快速有效地稳定在可行范围内,提升风电场的故障穿越能力。
文摘以电压源换流器为接口的分布式电源(distributedgenerator,DG)的故障电流完全由其控制策略决定,其传统的等值模型通常与常规电源类似,而忽视了控制策略的影响,造成含DG配电网故障分析存在局限性,尤其对于非对称故障情况。为此,首先对DG的相间短路故障穿越控制特性进行分析,针对正序分量控制的DG提出了压控电流源等值模型;在此基础上,通过建立DG输出电流与公共联接点(point of common coupling,PCC)正、负序电压之间的关系方程式,推导出不同的相间短路故障条件下PCC正序电压的求解方程组,从而建立含DG配电网相间短路故障分析精确模型。基于DIgSILENT建立含DG配电网模型,仿真结果验证了该故障分析方法的正确性。