This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of ma...This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.展开更多
This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumpti...This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.展开更多
The high-temperature sodium-ion batteries(SIBs)used for large-scale energy storage have attracted extensive attention in recent years.However,the development of SIBs is still hampered mainly by their poor charge/disch...The high-temperature sodium-ion batteries(SIBs)used for large-scale energy storage have attracted extensive attention in recent years.However,the development of SIBs is still hampered mainly by their poor charge/discharge efficiency and stability,necessitating the search for appropriate electrodes.A simple potassium ion intercalation process is used herein to obtain the potassium vanadate(KV_(3)O_(8))nanobelts.When serving as the anode for SIBs at a high temperature(60℃),the KV_(3)O_(8) nanobelts display superior sodium storage performance with a high capacity of 414mA h g^(-1) at 0.1Ag^(-1),remarkable rate capability(220mAh g^(-1) at 20Ag^(-1)),and super-long cycle life(almost no capacity fading at 10Ag^(-1) over 1000 cycles).Moreover,the ex-situ X-ray powder diffraction reveals no structural changes throughout the whole charge/discharge process,which further confirms their outstanding stability,indicating KV_(3)O_(8) nanobelts are a promising candidate for high-temperature SIBs.展开更多
The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typ...The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typical discharge product Li_(2)O_(2),LiOH shows better chemical and electrochemical stability.In this study,a free-standing cathode composed of hydrangea-likeδ-MnO_(2)with Ag nanoparticles(NPs)embedded in carbon paper(CP)(Ag/δ-MnO_(2)@CP)is fabricated and used as the catalyst for the reversible formation and decomposition of LiOH.The possible discharge mechanism is investigated by in situ Raman measurement and density functional theory calculation.Results confirm thatδ-MnO_(2)dominantly catalyzes the conversion reaction of discharge intermediate LiO_(2)*to LiOH and that Ag particles promote its catalytic ability.In the presence of Ag/δ-MnO_(2)@CP cathode,the LOB exhibits enhanced specific capacity and a high discharge voltage plateau under humid O_(2)atmosphere.At a current density of 200 mA g^(−1),the LOB with the Ag/δ-MnO_(2)@CP cathode presents an overpotential of 0.5 V and an ultra-long cycle life of 867 cycles with a limited specific capacity of 500 mA h g^(−1).This work provides a fresh view on the role of solid catalysts in LOBs and promotes the development of LOBs based on LiOH discharge product for practical applications.展开更多
基金The School of Mining Engineering,University of the Witwatersrand South Africa is acknowledged for providing support towards the success of this researchSpecifically the Centennial Trust Fund for Rock Engineering is appreciated for funding part of this research
文摘This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273107 and 61573077)Dalian Leading Talent(Grant No.841252)
文摘This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.
基金supported by the National Natural Science Foundation of China(51801030,51902032,51802044,51902062,and 51802043)the Natural Science Foundation of Jiangsu Province(BK20191026)Guangdong Natural Science Funds for the Distinguished Young Scholar(2019B151502039)。
文摘The high-temperature sodium-ion batteries(SIBs)used for large-scale energy storage have attracted extensive attention in recent years.However,the development of SIBs is still hampered mainly by their poor charge/discharge efficiency and stability,necessitating the search for appropriate electrodes.A simple potassium ion intercalation process is used herein to obtain the potassium vanadate(KV_(3)O_(8))nanobelts.When serving as the anode for SIBs at a high temperature(60℃),the KV_(3)O_(8) nanobelts display superior sodium storage performance with a high capacity of 414mA h g^(-1) at 0.1Ag^(-1),remarkable rate capability(220mAh g^(-1) at 20Ag^(-1)),and super-long cycle life(almost no capacity fading at 10Ag^(-1) over 1000 cycles).Moreover,the ex-situ X-ray powder diffraction reveals no structural changes throughout the whole charge/discharge process,which further confirms their outstanding stability,indicating KV_(3)O_(8) nanobelts are a promising candidate for high-temperature SIBs.
基金financially supported by the High-level Talents’Discipline Construction Fund of Shandong University(31370089963078)the School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(20190037 and 20210028)+3 种基金China Postdoctoral Science Foundation(2019M661276 and 2021T140150)Guangdong Basic and Applied Basic Research Foundation(2019A1515110756)the National Natural Science Foundation of China(52002094)the Open Fund of Guangdong Provincial Key laboratory of Advanced Energy Storage Materials(AESM202107)。
文摘The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typical discharge product Li_(2)O_(2),LiOH shows better chemical and electrochemical stability.In this study,a free-standing cathode composed of hydrangea-likeδ-MnO_(2)with Ag nanoparticles(NPs)embedded in carbon paper(CP)(Ag/δ-MnO_(2)@CP)is fabricated and used as the catalyst for the reversible formation and decomposition of LiOH.The possible discharge mechanism is investigated by in situ Raman measurement and density functional theory calculation.Results confirm thatδ-MnO_(2)dominantly catalyzes the conversion reaction of discharge intermediate LiO_(2)*to LiOH and that Ag particles promote its catalytic ability.In the presence of Ag/δ-MnO_(2)@CP cathode,the LOB exhibits enhanced specific capacity and a high discharge voltage plateau under humid O_(2)atmosphere.At a current density of 200 mA g^(−1),the LOB with the Ag/δ-MnO_(2)@CP cathode presents an overpotential of 0.5 V and an ultra-long cycle life of 867 cycles with a limited specific capacity of 500 mA h g^(−1).This work provides a fresh view on the role of solid catalysts in LOBs and promotes the development of LOBs based on LiOH discharge product for practical applications.