设计一种应用于广播电视发射基站的信号实时信道均衡系统,该系统基于数字信号处理(Digital Signal Processing,DSP)算法,旨在提高信号传输质量并降低误码率。系统由信号预处理、信道估计、自适应均衡3个关键模块组成。信号预处理模块采...设计一种应用于广播电视发射基站的信号实时信道均衡系统,该系统基于数字信号处理(Digital Signal Processing,DSP)算法,旨在提高信号传输质量并降低误码率。系统由信号预处理、信道估计、自适应均衡3个关键模块组成。信号预处理模块采用自适应滤波技术去除噪声和干扰;信道估计模块利用频域分析技术精确估计信道参数;自适应均衡模块则通过最小均方误差(Least Mean Square,LMS)算法动态调整均衡器系数,以补偿信道失真。实验结果表明,该系统在城市、郊区、山区环境下均能显著提高信号质量,降低误码率,并提供足够的信道容量,满足广播电视信号的高质量实时传输需求。展开更多
This fully digital beam position measurement instrument is designed for beam position monitoring and machine research in Shanghai Synchrotron Radiation Facility. The signals received from four position-sensitive detec...This fully digital beam position measurement instrument is designed for beam position monitoring and machine research in Shanghai Synchrotron Radiation Facility. The signals received from four position-sensitive detectors are narrow pulses with a repetition rate up to 499.654 MHz and a pulse width of around 100 ps, and their dynamic range could vary over more than 40 dB in machine research. By the employment of the under-sampling technique based on high-speed high-resolution A/D conversion, all the processing procedure is performed fully by the digital signal processing algorithms integrated in one single Field Programmable Gate Array. This system functions well in the laboratory and commissioning tests, demonstrating a position resolution (at the turn by turn rate of 694 kHz) better than 7 μm over the input amplitude range of -40 dBm to 10 dBm which is well beyond the requirement.展开更多
文摘设计一种应用于广播电视发射基站的信号实时信道均衡系统,该系统基于数字信号处理(Digital Signal Processing,DSP)算法,旨在提高信号传输质量并降低误码率。系统由信号预处理、信道估计、自适应均衡3个关键模块组成。信号预处理模块采用自适应滤波技术去除噪声和干扰;信道估计模块利用频域分析技术精确估计信道参数;自适应均衡模块则通过最小均方误差(Least Mean Square,LMS)算法动态调整均衡器系数,以补偿信道失真。实验结果表明,该系统在城市、郊区、山区环境下均能显著提高信号质量,降低误码率,并提供足够的信道容量,满足广播电视信号的高质量实时传输需求。
基金Supported by Knowledge Innovation Program of The Chinese Academy of Sciences (KJCX2-YW-N27)the National Natural Science Foundation of China (10875119)100 Talents Program of The Chinese Academy of Sciences
文摘This fully digital beam position measurement instrument is designed for beam position monitoring and machine research in Shanghai Synchrotron Radiation Facility. The signals received from four position-sensitive detectors are narrow pulses with a repetition rate up to 499.654 MHz and a pulse width of around 100 ps, and their dynamic range could vary over more than 40 dB in machine research. By the employment of the under-sampling technique based on high-speed high-resolution A/D conversion, all the processing procedure is performed fully by the digital signal processing algorithms integrated in one single Field Programmable Gate Array. This system functions well in the laboratory and commissioning tests, demonstrating a position resolution (at the turn by turn rate of 694 kHz) better than 7 μm over the input amplitude range of -40 dBm to 10 dBm which is well beyond the requirement.