缓存是命名数据网络(named data networking,NDN)有别于传统网络最突出的特性之一,NDN中默认所有节点都具有缓存所有经过数据的功能.这种"处处缓存"策略导致网内大量冗余数据的产生,使网内缓存被严重浪费.针对上述问题,首次...缓存是命名数据网络(named data networking,NDN)有别于传统网络最突出的特性之一,NDN中默认所有节点都具有缓存所有经过数据的功能.这种"处处缓存"策略导致网内大量冗余数据的产生,使网内缓存被严重浪费.针对上述问题,首次提出了一种基于节点分类(based on node classification,BNC)的数据存储策略.基于节点位置的不同,将数据返回客户端所经过的节点分为"边缘"类节点与"核心"类节点.当数据经过"核心"类节点时,通过权衡该类节点的位置与数据在不同节点的流行度分布,将数据存储在对其他节点最有利的节点中;当数据经过"边缘"类节点时,通过该数据流行度来选择最有利于客户端的位置.仿真结果表明,提出的策略将有效提高数据命中率,减少数据请求时延和距离.展开更多
文摘缓存是命名数据网络(named data networking,NDN)有别于传统网络最突出的特性之一,NDN中默认所有节点都具有缓存所有经过数据的功能.这种"处处缓存"策略导致网内大量冗余数据的产生,使网内缓存被严重浪费.针对上述问题,首次提出了一种基于节点分类(based on node classification,BNC)的数据存储策略.基于节点位置的不同,将数据返回客户端所经过的节点分为"边缘"类节点与"核心"类节点.当数据经过"核心"类节点时,通过权衡该类节点的位置与数据在不同节点的流行度分布,将数据存储在对其他节点最有利的节点中;当数据经过"边缘"类节点时,通过该数据流行度来选择最有利于客户端的位置.仿真结果表明,提出的策略将有效提高数据命中率,减少数据请求时延和距离.