Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characterist...Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characteristic space were researched through the analysis of two-dimensional and three-dimensional scatter diagrams. The results indicate that the hyper-space of remote sensing multi-data aggregation belongs to low-dimensional geometric structure, i.e. hyperplane form, and anomalous point groups including alteration information usually dissociate out of hyperplane. Scatter diagrams of remote sensing data band are mainly presented as two distribution forms of single-ellipse and dual-ellipse. Clarifying the relations of three objects of background, disturbance and alteration information in remote sensing images provides an important technical thought and guidance for accurately detecting and extracting remote sensing alteration information.展开更多
Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remain...Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric.展开更多
基金Project(2006BAB01A06) supported by the National Science and Technology Pillar Program Project during the 11th Five-Year Plan PeriodProject(1212010761503) supported by Land and Resources Investigation Project
文摘Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characteristic space were researched through the analysis of two-dimensional and three-dimensional scatter diagrams. The results indicate that the hyper-space of remote sensing multi-data aggregation belongs to low-dimensional geometric structure, i.e. hyperplane form, and anomalous point groups including alteration information usually dissociate out of hyperplane. Scatter diagrams of remote sensing data band are mainly presented as two distribution forms of single-ellipse and dual-ellipse. Clarifying the relations of three objects of background, disturbance and alteration information in remote sensing images provides an important technical thought and guidance for accurately detecting and extracting remote sensing alteration information.
基金supported in part by the National Natural Science Foundation of China under Grant 61379143in part by the Fundamental Research Funds for the Central Universities under Grant 2015QNA66in part by the Qing Lan Project of Jiangsu Province
文摘Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric.