Richards方程常用于非饱和土渗流问题,并且应用广泛。在数值求解中,对Richards方程线性化,进而采用有限差分法进行数值离散以及迭代计算。其中传统的迭代法比如Jacobi迭代、Gauss-Seidel迭代法(GS)和连续超松驰迭代法(successive over-r...Richards方程常用于非饱和土渗流问题,并且应用广泛。在数值求解中,对Richards方程线性化,进而采用有限差分法进行数值离散以及迭代计算。其中传统的迭代法比如Jacobi迭代、Gauss-Seidel迭代法(GS)和连续超松驰迭代法(successive over-relaxation method,简称SOR)迭代收敛率较慢,尤其在离散空间步长较小以及离散时间步长较大时。因此,采用整体校正法以及多步预处理法对传统迭代法进行改进,提出一种基于整体校正法的多步预处理Gauss-Seidel迭代法(improved Gauss-Seidel iterative method with multistep preconditioner based on the integral correction method,简称ICMP(m)-GS)求解Richards方程导出的线性方程组。通过非饱和渗流算例,并与传统迭代法和解析解对比,对改进算法的收敛率和加速效果进行了验证。结果表明,提出的ICMP(m)-GS可以很大程度地改善线性方程组的病态性,相较于常规方法GS,SOR以及单一改进方法,ICMP(m)-GS具有更快的收敛率,更高的计算效率和计算精度。该方法可以为非饱和土渗流的数值模拟提供一定参考。展开更多
In this paper we employ the Petrov Galerkin method for the parabolic problems to get the finite element approximate solution of high accuracy by means of the interpolation postprocessing, extrapolation and defect cor...In this paper we employ the Petrov Galerkin method for the parabolic problems to get the finite element approximate solution of high accuracy by means of the interpolation postprocessing, extrapolation and defect correction techniques.展开更多
文摘Richards方程常用于非饱和土渗流问题,并且应用广泛。在数值求解中,对Richards方程线性化,进而采用有限差分法进行数值离散以及迭代计算。其中传统的迭代法比如Jacobi迭代、Gauss-Seidel迭代法(GS)和连续超松驰迭代法(successive over-relaxation method,简称SOR)迭代收敛率较慢,尤其在离散空间步长较小以及离散时间步长较大时。因此,采用整体校正法以及多步预处理法对传统迭代法进行改进,提出一种基于整体校正法的多步预处理Gauss-Seidel迭代法(improved Gauss-Seidel iterative method with multistep preconditioner based on the integral correction method,简称ICMP(m)-GS)求解Richards方程导出的线性方程组。通过非饱和渗流算例,并与传统迭代法和解析解对比,对改进算法的收敛率和加速效果进行了验证。结果表明,提出的ICMP(m)-GS可以很大程度地改善线性方程组的病态性,相较于常规方法GS,SOR以及单一改进方法,ICMP(m)-GS具有更快的收敛率,更高的计算效率和计算精度。该方法可以为非饱和土渗流的数值模拟提供一定参考。
文摘In this paper we employ the Petrov Galerkin method for the parabolic problems to get the finite element approximate solution of high accuracy by means of the interpolation postprocessing, extrapolation and defect correction techniques.