An improved numerical simulation method is presented to calculate the downhole temperature distribution for multiple pay zones in producing oil wells. Based on hydrodynamics and heat transfer theory, a 2-D temperature...An improved numerical simulation method is presented to calculate the downhole temperature distribution for multiple pay zones in producing oil wells. Based on hydrodynamics and heat transfer theory, a 2-D temperature field model in cylindrical coordinates is developed. In the model, we considered general heat conduction as well as the heat convection due to fluid flow from porous formation to the borehole. We also take into account the fluid velocity variation in the wellbore due to multiple pay zones. We present coupled boundary conditions at the interfaces between the wellbore and adjacent formation, the wellbore and pay zone, and the pay zone and adjacent formation. Finally, an alternating direction implicit difference method (ADI) is used to solve the temperature model for the downhole temperature distribution. The comparison of modeled temperature curve with actual temperature log indicates that simulation result is in general quite similar to the actual temperature log. We found that the total production rate, production time, porosity, thickness of pay zones, and geothermal gradient, all have effects on the downhole temperature distribution.展开更多
The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water...The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water sand. During cooling the temperature of the central heat source goes down slower in oil- or air-saturated sands than in water sands. Based on the theory of heat-conduction in porous media and the experimental results, we developed a new heat-conduction logging technique which utilizes an artificial heat source (dynamite charge or electric heater) to heat up target forma- tions in the borehole and then measure the change of temperature at a later time. Post-frac oil production is shown to be directly proportional to the size of the temperature anomaly when other reservoir parameters are fairly consistent. The method is used to evaluate potential oil production for marginal reservoirs in the FY formation in Song-Liao basin of China.展开更多
Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In ...Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In this study, electrical conduction in a vuggy reservoir is theoretically analyzed to establish a new saturation equation for vuggy reservoirs. We found that vugs have a greater effect on saturation than resistivity, which causes inflection in the rock-electricity curve. Using single-variable exPeriments, we evaluated the effects of rug size, vug number, and vug distribution on the rock-electricity relation. Based on the general saturation model, a saturation equation for vuggy reservoirs is derived, and the physical significance of the equation parameters is discussed based on the seepage-electricity similarity. The equation parameters depend on the pore structure, and vugs and matrix pore size distribution. Furthermore, a method for calculating the equation parameters is proposed, which uses nuclear magnetic resonance (NMR) data to calculate the capillary pressure curve. Field application of the proposed equation and parameter derivation method shows good match between calculated and experimental results, with an average absolute error of 5.8%.展开更多
基金sponsored by the National Nature Science Foundation of China (Grant No. 40830424).
文摘An improved numerical simulation method is presented to calculate the downhole temperature distribution for multiple pay zones in producing oil wells. Based on hydrodynamics and heat transfer theory, a 2-D temperature field model in cylindrical coordinates is developed. In the model, we considered general heat conduction as well as the heat convection due to fluid flow from porous formation to the borehole. We also take into account the fluid velocity variation in the wellbore due to multiple pay zones. We present coupled boundary conditions at the interfaces between the wellbore and adjacent formation, the wellbore and pay zone, and the pay zone and adjacent formation. Finally, an alternating direction implicit difference method (ADI) is used to solve the temperature model for the downhole temperature distribution. The comparison of modeled temperature curve with actual temperature log indicates that simulation result is in general quite similar to the actual temperature log. We found that the total production rate, production time, porosity, thickness of pay zones, and geothermal gradient, all have effects on the downhole temperature distribution.
文摘The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water sand. During cooling the temperature of the central heat source goes down slower in oil- or air-saturated sands than in water sands. Based on the theory of heat-conduction in porous media and the experimental results, we developed a new heat-conduction logging technique which utilizes an artificial heat source (dynamite charge or electric heater) to heat up target forma- tions in the borehole and then measure the change of temperature at a later time. Post-frac oil production is shown to be directly proportional to the size of the temperature anomaly when other reservoir parameters are fairly consistent. The method is used to evaluate potential oil production for marginal reservoirs in the FY formation in Song-Liao basin of China.
基金supported by the National S&T Major Special Project(No.2011ZX05020-008)
文摘Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In this study, electrical conduction in a vuggy reservoir is theoretically analyzed to establish a new saturation equation for vuggy reservoirs. We found that vugs have a greater effect on saturation than resistivity, which causes inflection in the rock-electricity curve. Using single-variable exPeriments, we evaluated the effects of rug size, vug number, and vug distribution on the rock-electricity relation. Based on the general saturation model, a saturation equation for vuggy reservoirs is derived, and the physical significance of the equation parameters is discussed based on the seepage-electricity similarity. The equation parameters depend on the pore structure, and vugs and matrix pore size distribution. Furthermore, a method for calculating the equation parameters is proposed, which uses nuclear magnetic resonance (NMR) data to calculate the capillary pressure curve. Field application of the proposed equation and parameter derivation method shows good match between calculated and experimental results, with an average absolute error of 5.8%.