Synthetic aperture imaging lidar is an active new imaging system, which can offer a finer azimuth resolution than the SAR system. An indoor system of synthetic aperture imaging lidar is given, which is a demonstration...Synthetic aperture imaging lidar is an active new imaging system, which can offer a finer azimuth resolution than the SAR system. An indoor system of synthetic aperture imaging lidar is given, which is a demonstration about synthetic aperture to image rotating objects. Firstly, the basic principle is introduced. Then, the basic method and key techniques are analyzed. After that an improved system is given with the transmitting and the receiving lens apart from each other which can eliminate the interference efficiently. Finally, the block diagram and the result of imaging system are given, which prove the validity of the system and the feasibility of the synthetic aperture techniques in optical domain.展开更多
In this paper,a special geometry case of spaceborne-airborne bistatic SAR(SA-BiSAR) is considered,in which satellite and aircraft flight paths are parallel and their antennas are steering at the strip map.This case is...In this paper,a special geometry case of spaceborne-airborne bistatic SAR(SA-BiSAR) is considered,in which satellite and aircraft flight paths are parallel and their antennas are steering at the strip map.This case is a simple but typical application example,which is applicable for non-cooperative illumination.The integration time of SA-BiSAR system is derived via the motion of transmitter and receiver footprint.In parallel and stripmap mode,Doppler frequency is obtained through the combination be-tween spaceborne and airborne SAR.Other Doppler properties have been envisaged,including Doppler bandwidth and azimuth resolution.The overall simulation experiments are conducted and some characteristics are exhibited.The critical parameters,which have the significant effect on the SA-BiSAR Doppler properties,are extracted by analytical expressions and numerical simulations.In parallel and strip map mode and with reference to ENVISAT-1,SA-BiSAR system possesses the potential of yielding 10 m azi-muth resolution and 0.5 s integration time for C-band via the analysis of simulation results.展开更多
基金Supported by the National High Technology Research and Development Program of China ("863" Program, No.2006AA12Z144)
文摘Synthetic aperture imaging lidar is an active new imaging system, which can offer a finer azimuth resolution than the SAR system. An indoor system of synthetic aperture imaging lidar is given, which is a demonstration about synthetic aperture to image rotating objects. Firstly, the basic principle is introduced. Then, the basic method and key techniques are analyzed. After that an improved system is given with the transmitting and the receiving lens apart from each other which can eliminate the interference efficiently. Finally, the block diagram and the result of imaging system are given, which prove the validity of the system and the feasibility of the synthetic aperture techniques in optical domain.
文摘In this paper,a special geometry case of spaceborne-airborne bistatic SAR(SA-BiSAR) is considered,in which satellite and aircraft flight paths are parallel and their antennas are steering at the strip map.This case is a simple but typical application example,which is applicable for non-cooperative illumination.The integration time of SA-BiSAR system is derived via the motion of transmitter and receiver footprint.In parallel and stripmap mode,Doppler frequency is obtained through the combination be-tween spaceborne and airborne SAR.Other Doppler properties have been envisaged,including Doppler bandwidth and azimuth resolution.The overall simulation experiments are conducted and some characteristics are exhibited.The critical parameters,which have the significant effect on the SA-BiSAR Doppler properties,are extracted by analytical expressions and numerical simulations.In parallel and strip map mode and with reference to ENVISAT-1,SA-BiSAR system possesses the potential of yielding 10 m azi-muth resolution and 0.5 s integration time for C-band via the analysis of simulation results.