To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan charac...To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan character sample image the first level approximation component of the Haar wavelet transform is calculated.Secondly the approximation component is partitioned into several equal-sized zones. Finally the gradient direction histograms of each zone are calculated and the local direction histograms of the approximation component are considered as the features of the character sample image.The proposed method is tested on the recently developed off-line Tibetan handwritten character sample database.The experimental results demonstrate the effectiveness and efficiency of the proposed feature extraction method.Furthermore compared with the detail components the approximation component contributes more to the recognition accuracy.展开更多
Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode an...Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode and C4 electrode in left-right hands imagery movement during some periods of time. The reconstructed signal of approximation coefficient A6 on the 6al level was selected to build up a feature signal. Secondly, the performances by Fisher Linear Discriminant Analysis with two different threshold calculation ways and Support Vector Machine methods were compared. The final classification results showed that false classification rate by Support Vector Machine was lower and gained an ideal classification results.展开更多
基金The National Natural Science Foundation of China(No.60963016)the National Social Science Foundation of China(No.17BXW037)
文摘To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan character sample image the first level approximation component of the Haar wavelet transform is calculated.Secondly the approximation component is partitioned into several equal-sized zones. Finally the gradient direction histograms of each zone are calculated and the local direction histograms of the approximation component are considered as the features of the character sample image.The proposed method is tested on the recently developed off-line Tibetan handwritten character sample database.The experimental results demonstrate the effectiveness and efficiency of the proposed feature extraction method.Furthermore compared with the detail components the approximation component contributes more to the recognition accuracy.
基金The Open Project of the State Key Laboratory of Robotics and System (HIT)the State Key Laboratory of Cognitive Neuroscience and Learning+3 种基金Natural Science Fund for Colleges and Universities in Jiangsu Provincegrant number:105TB51003Natural Science Fund in Changzhougrant number:CJ20110023
文摘Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode and C4 electrode in left-right hands imagery movement during some periods of time. The reconstructed signal of approximation coefficient A6 on the 6al level was selected to build up a feature signal. Secondly, the performances by Fisher Linear Discriminant Analysis with two different threshold calculation ways and Support Vector Machine methods were compared. The final classification results showed that false classification rate by Support Vector Machine was lower and gained an ideal classification results.