天线的方向系数是天线的核心性能指标之一,准确计算方向系数是高性能天线应用的核心要求.本文基于平面近场测试理论、实测数据和快速傅里叶变换算法,系统阐述基于近场测试来数值计算天线方向系数的原理,并进行深入的误差分析.本文选择...天线的方向系数是天线的核心性能指标之一,准确计算方向系数是高性能天线应用的核心要求.本文基于平面近场测试理论、实测数据和快速傅里叶变换算法,系统阐述基于近场测试来数值计算天线方向系数的原理,并进行深入的误差分析.本文选择一种方向图函数和方向系数已知的被测天线,来检验所讨论的误差评估方案.评估分两步实现,第一步,针对这一天线,采用标准的近场测试配置,仿真模拟出(相当于实际测量出)一套平面近场数据.第二步,基于这套近场数据,利用数值积分计算出天线方向系数.本文使用或提出了四种数值算法,分析了提出的后三种算法本身的误差来源,并开发出程序搜索方案,确定出后两种算法的最小误差界.随后,利用这四种数值算法分别得出天线的方向系数.结果表明,计算所得的近场方向系数都比真实方向系数大,但误差不超过0.6 d B.这一结果对实际应用中正确评估基于近场测试的天线方向系数准确性有重要参考价值.展开更多
文摘天线的方向系数是天线的核心性能指标之一,准确计算方向系数是高性能天线应用的核心要求.本文基于平面近场测试理论、实测数据和快速傅里叶变换算法,系统阐述基于近场测试来数值计算天线方向系数的原理,并进行深入的误差分析.本文选择一种方向图函数和方向系数已知的被测天线,来检验所讨论的误差评估方案.评估分两步实现,第一步,针对这一天线,采用标准的近场测试配置,仿真模拟出(相当于实际测量出)一套平面近场数据.第二步,基于这套近场数据,利用数值积分计算出天线方向系数.本文使用或提出了四种数值算法,分析了提出的后三种算法本身的误差来源,并开发出程序搜索方案,确定出后两种算法的最小误差界.随后,利用这四种数值算法分别得出天线的方向系数.结果表明,计算所得的近场方向系数都比真实方向系数大,但误差不超过0.6 d B.这一结果对实际应用中正确评估基于近场测试的天线方向系数准确性有重要参考价值.