文摘方言语音识别是方言保护的核心环节。传统的方言语音识别模型缺乏考虑方言语音中特定方言音素的重要性,同时缺少多种语音特征提取及融合,导致方言语音识别性能不高。本文提出的端到端方言语音识别模型充分发挥了残差网络(Residual Network)和Bi-LSTM(Bi-directional Long Short-Term Memory)分别在语音帧内和帧间特征提取的优势,并利用多头自注意力机制有效提取不同方言中特定方言音素信息构成语音发音底层特征,利用该方言发音底层特征进行方言语音识别。在基准赣方言和客家方言两种方言语音语料库上的实验结果表明本文提出的方言语音识别模型显著优于现有基准模型,通过对注意力机制的可视化进一步分析了模型取得性能提升的根本原因。