Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulabl...Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.展开更多
基金supported by the National Natural Science Foundation of China(21901133,22171155 and 22071126)the State Key Laboratory of Fine Chemicals(KF1905)。
文摘Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.