针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。...针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。展开更多
提出一种基于图像梯度旋转直方图(RHG,rotation histogram of gradients)的快速计算旋转不变特征描述符算法。RHG描述符使用直方图旋转的方法获得旋转不变性,采用直方图加权合并的方法降低边界效应引起的描述符统计矢量的突变。RHG描述...提出一种基于图像梯度旋转直方图(RHG,rotation histogram of gradients)的快速计算旋转不变特征描述符算法。RHG描述符使用直方图旋转的方法获得旋转不变性,采用直方图加权合并的方法降低边界效应引起的描述符统计矢量的突变。RHG描述符将特征点主方向的计算与描述符的计算合并,提高了计算效率。RHG描述符在图像存在尺度改变、3维视角变化引起的变形、旋转变化、照度改变和噪声等因素的影响下,具有较强的鲁棒性。RHG描述符的性能与尺度不变特征变换(SIFT,scale invariant feature transform)描述符相近,但计算速度提高2倍以上。展开更多
文摘针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。