期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
无偏脊峰回归分析方法研究
1
作者 包为民 张小琴 +3 位作者 徐诗军 付森彪 瞿思敏 江鹏 《水电能源科学》 北大核心 2009年第2期76-78,共3页
提出了无偏回归估计方法,从理论上证明了该法比常规的估计法具有更小的平均估计误差。针对脊峰回归估计存在的问题,构建了岭无偏回归方法并讨论了此法的优点与应用前景。
关键词 无偏回归 无偏回归 估计误差 理论证明
下载PDF
基于背膘厚度构建民猪肌内脂肪含量的预测模型 被引量:1
2
作者 刘亚欣 何鑫淼 +6 位作者 刘欣睿 秦婕 王嘉博 王文涛 吴赛辉 刘娣 钟金城 《黑龙江畜牧兽医》 北大核心 2023年第13期63-67,135,共6页
为了探究不同统计模型预测猪肌内脂肪含量和眼肌面积的可行性,试验利用测定的312头民猪的体重、背膘厚和日龄数据,以岭回归最佳线性无偏估计(ridge regression best linear unbiased prediction,rrBLUP)、贝叶斯B (Bayes B)、随机森林算... 为了探究不同统计模型预测猪肌内脂肪含量和眼肌面积的可行性,试验利用测定的312头民猪的体重、背膘厚和日龄数据,以岭回归最佳线性无偏估计(ridge regression best linear unbiased prediction,rrBLUP)、贝叶斯B (Bayes B)、随机森林算法(Random Forest,RF)三种模型来预测民猪肌内脂肪(intramuscular fat,IMF)含量和眼肌面积(eye muscle area,EMA),每种模型均采用5倍交叉法和去一法进行验证,比较预测结果以得出预测准确率较好的一种模型。结果表明:两种验证方法中,去一法的预测准确率要明显高于5倍交叉法,但计算效率较慢。在预测肌内脂肪含量的模型中,rrBLUP、Bayes B、RF模型的预测准确率分别为0.639,0.595,0.631,其中rrBLUP模型预测效果较好。在预测眼肌面积的模型中,rrBLUP、Bayes B、RF模型的预测准确率分别为0.618,0.464,0.642,其中RF模型预测效果较好。说明基于体重、日龄和背膘厚测定数据预测民猪IMF和EMA是可行的。 展开更多
关键词 民猪 构建模型 肌内脂肪 眼肌面积 预测准确率 回归最佳线性无偏估计模型 贝叶斯B模型 随机森林算法模型
原文传递
Unbiased Quasi-regression 被引量:1
3
作者 Guijun YANG Lu LIN Runchu ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第2期177-186,共10页
Quasi-regression, motivated by the problems arising in the computer experiments, focuses mainly on speeding up evaluation. However, its theoretical properties are unexplored systemically. This paper shows that quasi-r... Quasi-regression, motivated by the problems arising in the computer experiments, focuses mainly on speeding up evaluation. However, its theoretical properties are unexplored systemically. This paper shows that quasi-regression is unbiased, strong convergent and asymptotic normal for parameter estimations but it is biased for the fitting of curve. Furthermore, a new method called unbiased quasi-regression is proposed. In addition to retaining the above asymptotic behaviors of parameter estimations, unbiased quasi-regression is unbiased for the fitting of curve. 展开更多
关键词 Computer experiment Quasi-regression UNBIASEDNESS Fitting of curve Asymptotic normality
原文传递
MAXIMUM INFORMATION AND OPTIMUM ESTIMATING FUNCTION 被引量:1
4
作者 LIN Lu Department of Statistics, School of Mathematical Sciences, Nankai University, Tianjin 300071, China. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第3期349-358,共10页
In order to construct estimating functions in some parametric models, this paper introducestwo classes of information matrices. Some necessary and sufficient conditions for the informationmatrices achieving their uppe... In order to construct estimating functions in some parametric models, this paper introducestwo classes of information matrices. Some necessary and sufficient conditions for the informationmatrices achieving their upper bounds are given. For the problem of estimating the median,some optimum estimating functions based on the information matrices are acquired. Undersome regularity conditions, an approach to carrying out the best basis function is introduced. Innonlinear regression models, an optimum estimating function based on the information matricesis obtained. Some examples are given to illustrate the results. Finally, the concept of optimumestimating function and the methods of constructing optimum estimating function are developedin more general statistical models. 展开更多
关键词 Quasi (pseudo) Fisher information Estimating function Quasi score Nonlinear regression model Median regression model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部