期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于压缩感知的无标签行为数据标记方法
被引量:
1
1
作者
宋辉
张荣
《西安邮电大学学报》
2020年第2期64-67,共4页
针对传统无标签行为数据标记方法需要事先计算行为类别数目的不足,提出一种基于压缩感知的无标签行为数据标记方法。按照无标签数据最大可能类别数目进行聚类,从各聚类簇中选择高可信数据,使用压缩感知的冗余字典矩阵对高可信数据进行识...
针对传统无标签行为数据标记方法需要事先计算行为类别数目的不足,提出一种基于压缩感知的无标签行为数据标记方法。按照无标签数据最大可能类别数目进行聚类,从各聚类簇中选择高可信数据,使用压缩感知的冗余字典矩阵对高可信数据进行识别,通过动态匹配得到数据类别标签。实验结果表明,该方法对6种人体行为无标签数据的平均标记准确率达到96.80%,能够实现不计算行为类别数目进行数据标记。
展开更多
关键词
无标签行为数据
数据
标记
压缩感知
下载PDF
职称材料
题名
基于压缩感知的无标签行为数据标记方法
被引量:
1
1
作者
宋辉
张荣
机构
西安邮电大学计算机学院
出处
《西安邮电大学学报》
2020年第2期64-67,共4页
基金
国家自然科学基金项目(61373116),陕西省教育厅专项科学研究计划项目(18JK0698)。
文摘
针对传统无标签行为数据标记方法需要事先计算行为类别数目的不足,提出一种基于压缩感知的无标签行为数据标记方法。按照无标签数据最大可能类别数目进行聚类,从各聚类簇中选择高可信数据,使用压缩感知的冗余字典矩阵对高可信数据进行识别,通过动态匹配得到数据类别标签。实验结果表明,该方法对6种人体行为无标签数据的平均标记准确率达到96.80%,能够实现不计算行为类别数目进行数据标记。
关键词
无标签行为数据
数据
标记
压缩感知
Keywords
unlabeled activity data
data labeling
compressed sensing
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于压缩感知的无标签行为数据标记方法
宋辉
张荣
《西安邮电大学学报》
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部