期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
无穷格子系统的新型周期行波解
1
作者 花杰 沈自飞 《浙江师范大学学报(自然科学版)》 CAS 2012年第3期246-251,共6页
研究了无穷格子系统.q.(n)+f'(q(n))=V'(q(n+1)-q(n))-V'(q(n)-q(n-1)),n∈Z周期行波解的存在性.其中:q(n)=q(n,t)是第n个质点在t时刻的坐标;f表示质点的位势函数;V表示相邻2个质点间的相互作用函数.应用山路定理和环绕定理... 研究了无穷格子系统.q.(n)+f'(q(n))=V'(q(n+1)-q(n))-V'(q(n)-q(n-1)),n∈Z周期行波解的存在性.其中:q(n)=q(n,t)是第n个质点在t时刻的坐标;f表示质点的位势函数;V表示相邻2个质点间的相互作用函数.应用山路定理和环绕定理,获得了该系统新型周期行波解的存在性定理. 展开更多
关键词 无穷维哈密顿系统 行波 周期运动 山路定理 环绕定理
下载PDF
On Feasibility of Variable Separation Method Based on Hamiltonian System for a Class of Plate Bending Equations 被引量:5
2
作者 额布日力吐 阿拉坦仓 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第3期569-574,共6页
The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended e... The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations. 展开更多
关键词 plate bending equation infinite-dimensioanl Hamiltonian operator eigenfunction system COMPLETENESS general solution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部