While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
Wireless sensor networks have several special characteristics which make against the network coverage, such as shortage of energy, difficulty with energy supply and so on. In order to prolong the lifetime of wireless ...Wireless sensor networks have several special characteristics which make against the network coverage, such as shortage of energy, difficulty with energy supply and so on. In order to prolong the lifetime of wireless sensor networks, it is necessary to balance the whole network load. As the energy consumption is related to the situation of nodes, the distribution uniformity must be considered. In this paper, a new model is proposed to evaluate the nodes distribution uniformity by considering some parameters which include compression discrepancy, sparseness discrepancy, self discrepancy, maximum cavity radius and minimum cavity radius. The simulation results show that the presented model could be helpful for measuring the distribution uniformity of nodes scattered randomly in wireless sensor networks.展开更多
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
基金Supported by the National Natural Science Foundation of China (No. 60572035)
文摘Wireless sensor networks have several special characteristics which make against the network coverage, such as shortage of energy, difficulty with energy supply and so on. In order to prolong the lifetime of wireless sensor networks, it is necessary to balance the whole network load. As the energy consumption is related to the situation of nodes, the distribution uniformity must be considered. In this paper, a new model is proposed to evaluate the nodes distribution uniformity by considering some parameters which include compression discrepancy, sparseness discrepancy, self discrepancy, maximum cavity radius and minimum cavity radius. The simulation results show that the presented model could be helpful for measuring the distribution uniformity of nodes scattered randomly in wireless sensor networks.