本文通过分析碱金属原子在原子气室中的自旋弛豫作用,得出了原子磁力仪灵敏度上限受气室尺寸影响的理论模型。计算了不同气室尺寸下,工作物质为87Rb、工作温度为383.15 K时缓冲气体Ar的最优压强,此压强值随气室尺寸减小而快速增大。在...本文通过分析碱金属原子在原子气室中的自旋弛豫作用,得出了原子磁力仪灵敏度上限受气室尺寸影响的理论模型。计算了不同气室尺寸下,工作物质为87Rb、工作温度为383.15 K时缓冲气体Ar的最优压强,此压强值随气室尺寸减小而快速增大。在此基础上,计算了不同气室尺寸下磁力仪灵敏度上限。结果表明,磁力仪灵敏度上限随原子气室尺寸减小而快速恶化,当气室直径由1 cm减小到0.1 cm时,磁力仪灵敏度上限由0.4 p T Hz-1/2恶化为15 p T Hz-1/2。展开更多
文摘本文通过分析碱金属原子在原子气室中的自旋弛豫作用,得出了原子磁力仪灵敏度上限受气室尺寸影响的理论模型。计算了不同气室尺寸下,工作物质为87Rb、工作温度为383.15 K时缓冲气体Ar的最优压强,此压强值随气室尺寸减小而快速增大。在此基础上,计算了不同气室尺寸下磁力仪灵敏度上限。结果表明,磁力仪灵敏度上限随原子气室尺寸减小而快速恶化,当气室直径由1 cm减小到0.1 cm时,磁力仪灵敏度上限由0.4 p T Hz-1/2恶化为15 p T Hz-1/2。