期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于IAPSO-Holt-TCN的时序瓦斯浓度预测模型
1
作者
温廷新
陈思宇
《中国安全生产科学技术》
CAS
CSCD
北大核心
2023年第7期57-62,共6页
为了提升时序瓦斯浓度预测精度,提出1种基于特征组合(FCIH)-时间卷积网络(TCN)的预测模型。首先,基于粒子群(PSO)算法重构惯性权重和加速因子,设计自适应粒子群(IAPSO)寻优算法;然后,利用IAPSO优化霍尔特指数平滑(Holt)相关超参数,应用H...
为了提升时序瓦斯浓度预测精度,提出1种基于特征组合(FCIH)-时间卷积网络(TCN)的预测模型。首先,基于粒子群(PSO)算法重构惯性权重和加速因子,设计自适应粒子群(IAPSO)寻优算法;然后,利用IAPSO优化霍尔特指数平滑(Holt)相关超参数,应用Holt生成时序瓦斯浓度的水平、趋势分量,并与时序瓦斯浓度历史数据构成特征组合,以此获取具有高度预测性的特征;接着,基于构建的特征组合,搭建FCIH-TCN时序瓦斯浓度预测框架;最后,采用多个模型进行对比实验。研究结果表明:使用IAPSO后,Holt预测模型的平均绝对误差下降0.019;FCIH作为模型输入有效提高LSTM、GRU及TCN模型的预测精度;FCIH-TCN的RMSE为0.05,MAE为0.035,其预测精度优于其他对比模型。研究结果可为矿井瓦斯灾害防治提供参考。
展开更多
关键词
时序瓦斯浓度预测
特征组合
自适应粒子群
霍尔特指数平滑(Holt)
时间卷积网络(TCN)
下载PDF
职称材料
题名
基于IAPSO-Holt-TCN的时序瓦斯浓度预测模型
1
作者
温廷新
陈思宇
机构
辽宁工程技术大学工商管理学院
出处
《中国安全生产科学技术》
CAS
CSCD
北大核心
2023年第7期57-62,共6页
基金
国家自然科学基金项目(71771111)
辽宁省社会科学规划基金项目(L14BTJ004)。
文摘
为了提升时序瓦斯浓度预测精度,提出1种基于特征组合(FCIH)-时间卷积网络(TCN)的预测模型。首先,基于粒子群(PSO)算法重构惯性权重和加速因子,设计自适应粒子群(IAPSO)寻优算法;然后,利用IAPSO优化霍尔特指数平滑(Holt)相关超参数,应用Holt生成时序瓦斯浓度的水平、趋势分量,并与时序瓦斯浓度历史数据构成特征组合,以此获取具有高度预测性的特征;接着,基于构建的特征组合,搭建FCIH-TCN时序瓦斯浓度预测框架;最后,采用多个模型进行对比实验。研究结果表明:使用IAPSO后,Holt预测模型的平均绝对误差下降0.019;FCIH作为模型输入有效提高LSTM、GRU及TCN模型的预测精度;FCIH-TCN的RMSE为0.05,MAE为0.035,其预测精度优于其他对比模型。研究结果可为矿井瓦斯灾害防治提供参考。
关键词
时序瓦斯浓度预测
特征组合
自适应粒子群
霍尔特指数平滑(Holt)
时间卷积网络(TCN)
Keywords
time series gas concentration prediction
feature combination
adaptive particle swarm
holt exponential smoothing(Holt)
temporal convolutional network(TCN)
分类号
X936 [环境科学与工程—安全科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于IAPSO-Holt-TCN的时序瓦斯浓度预测模型
温廷新
陈思宇
《中国安全生产科学技术》
CAS
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部