A novel scheme, namely united stabilizing scheme for edge delay, is introduced in optical burst switched networks. In the scheme, the limits of burst length and assembly time are both set according to certain qualific...A novel scheme, namely united stabilizing scheme for edge delay, is introduced in optical burst switched networks. In the scheme, the limits of burst length and assembly time are both set according to certain qualifications. For executing the scheme, the conception for unit input bit rate is introduced to improve universality, and the assembly algorithm with a buffer safety space under the self-similar traffic model at each ingress edge router is proposed. Then, the components of burst and packet delay are concluded, and the equations that limits of burst length and assembly time should satisfy to stabilize the burst edge delay under different buffer offered loads are educed. The simulation results show that united stabilizing scheme stabilizes both burst and packet edge delay to a great extent when buffer offered load changes from 0.1 to 1, and the edge delay of burst and packet are near the limit values under larger offered load, respectively.展开更多
基金Supported by the National Natural Science Foundation of China (No.60272048)
文摘A novel scheme, namely united stabilizing scheme for edge delay, is introduced in optical burst switched networks. In the scheme, the limits of burst length and assembly time are both set according to certain qualifications. For executing the scheme, the conception for unit input bit rate is introduced to improve universality, and the assembly algorithm with a buffer safety space under the self-similar traffic model at each ingress edge router is proposed. Then, the components of burst and packet delay are concluded, and the equations that limits of burst length and assembly time should satisfy to stabilize the burst edge delay under different buffer offered loads are educed. The simulation results show that united stabilizing scheme stabilizes both burst and packet edge delay to a great extent when buffer offered load changes from 0.1 to 1, and the edge delay of burst and packet are near the limit values under larger offered load, respectively.