期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
非线性耦合分数阶微分方程组正解的存在性
1
作者 戴振祥 薛益民 彭钟琪 《徐州工程学院学报(自然科学版)》 CAS 2024年第3期72-81,共10页
利用格林函数的性质和Guo-Krasnosel′skii′s不动点定理,研究一类非线性Riemann-Liouville型分数阶微分方程耦合方程组边值问题,得到了该方程组正解存在的充分条件,并举例说明所得结论的适用性.
关键词 耦合分数微分方程 边值问题 正解 不动点定理
下载PDF
一类Caputo-Katugampola型分数阶微分方程耦合系统边值问题
2
作者 黎宁静 何小飞 陈国平 《吉首大学学报(自然科学版)》 CAS 2024年第5期17-27,共11页
利用Leray-Schauder二择一定理和Schauder不动点定理,研究了一类具有Caputo-Katugampola型导数的分数阶微分方程耦合系统边值问题解的存在唯一性,再利用Banach不动点定理和Ulam-Hyers稳定性的定义,讨论了该边值问题的Ulam-Hyers稳定性.
关键词 分数微分方程 Caputo-Katugampola型导数 耦合系统 不动点定理 Ulam-Hyers稳定性
下载PDF
时空分数阶扩散偏微分方程的谱方法
3
作者 党明杰 蒋利华 《桂林电子科技大学学报》 2024年第1期98-104,共7页
扩散方程是物理学建模最基本的方程之一。研究时空分数阶扩散偏微分方程的谱方法数值求解,时间方向采用Caputo分数阶导数的L1插值逼近格式,构造了原方程在时间方向上的半离散格式,证明了半离散格式解的存在唯一性和稳定性,并给出了误差... 扩散方程是物理学建模最基本的方程之一。研究时空分数阶扩散偏微分方程的谱方法数值求解,时间方向采用Caputo分数阶导数的L1插值逼近格式,构造了原方程在时间方向上的半离散格式,证明了半离散格式解的存在唯一性和稳定性,并给出了误差分析方面结论的相关证明。在半离散格式的基础上,空间方向采用Legendre谱方法离散得到原方程的全离散格式,进一步证明了此全离散格式的解存在且唯一,而是无条件稳定的,并严格证明了数值解与精确解之间的误差方面的结论。 展开更多
关键词 时空分数扩散偏微分方程 谱方法 解的存在唯一性 稳定性 误差分析
下载PDF
时空分数阶Navier-Stokes方程解的存在性
4
作者 姜自文 王丽真 王路生 《纯粹数学与应用数学》 2024年第3期485-498,共14页
本文研究了时空分数阶不可压缩Navier-Stokes方程的Cauchy问题,并在Marcinkiewicz空间中建立了该方程mild解的存在唯一性.具体地,利用Mittag-Leffler算子在Marcinkiewicz空间的弱L^(r)-弱L^(q)估计以及关于时间的连续性和不动点定理,在B... 本文研究了时空分数阶不可压缩Navier-Stokes方程的Cauchy问题,并在Marcinkiewicz空间中建立了该方程mild解的存在唯一性.具体地,利用Mittag-Leffler算子在Marcinkiewicz空间的弱L^(r)-弱L^(q)估计以及关于时间的连续性和不动点定理,在BC((0,∞);L_(σ)^(d/α-1,∞)(R^(d)))空间得到了小初值条件下该方程的全局mild解的存在唯一性. 展开更多
关键词 时空分数Navier-Stokes方程 Marcinkiewicz空间 MILD解 存在唯一性
下载PDF
(3+1)-维时空分数阶Yu-Toda-Sasa-Fukuyama方程的精确解
5
作者 陈进华 字德荣 《红河学院学报》 2024年第5期136-140,共5页
借助Jumarie’s modified Riemann-Liouville导数的性质,将(3+1)-维时空分数阶Yu-Toda-Sasa-Fukuyama方程简化为常微分方程.通过构造一元三次多项式,运用完全判别法得到了(3+1)-维时空分数阶Yu-Toda-Sasa-Fukuyama方程的7组精确解.
关键词 (3+1)-维时空分数Yu-Toda-Sasa-Fukuyama方程 Jumarie’s modified Riemann-Liouville导数 精确解 多项式完全判别法 JACOBI椭圆函数
下载PDF
微分变换方法求解时间和空间同时带分数阶导数的耦合Burgers方程组 被引量:1
6
作者 马维元 刘露 《宁夏师范学院学报》 2011年第3期23-29,共7页
首先介绍了Caputo分数阶导数的定义及广义的二维微分变换方法,然后应用微分变换方法求解时间和空间带分数阶导数的耦合Burgers方程组,最后通过一些实例说明应用微分变换方法求解分数阶耦合Burgers方程组是可靠的和有效的.
关键词 分数耦合burgers方程 分数导数 微分变换方法
下载PDF
基于五阶WENO格式的时间分数阶Burgers方程的多重网格方法
7
作者 白慧冉 魏英岚 《应用数学进展》 2023年第3期873-878,共6页
我们研究一种求解时间分数阶Burgers方程的多重网格方法。离散化过程中,时间分数阶导数采用L1公式逼近,对流项运用Lax-Friedrichs通量近似计算。在数值实验中,在不同的 取值下进行了有效的数值实验,结果证明该方法可以很好地模拟间断。
关键词 时间分数burgers方程 多重网格法 WENO格式
下载PDF
基于通量限制器的时间分数阶Burgers方程数值解法
8
作者 魏英岚 白慧冉 《应用数学进展》 2023年第1期254-262,共9页
对于求解可能具有激波等不连续点的时间分数阶守恒律,当分数阶γ接近于0时,目前还没有有效的方法求解时间分数阶非线性离散系统,本文以时间分数阶Burgers方程为例,运用多重网格迭代方法进行求解,对于对流项,采用通量限制器,使得新的数... 对于求解可能具有激波等不连续点的时间分数阶守恒律,当分数阶γ接近于0时,目前还没有有效的方法求解时间分数阶非线性离散系统,本文以时间分数阶Burgers方程为例,运用多重网格迭代方法进行求解,对于对流项,采用通量限制器,使得新的数值通量在光滑区域变为高阶通量而在间断附近变为低阶通量,从而使问题的解达到更高阶精度,并在不同的γ取值以及不同的初边值条件下进行了有效的数值实验。 展开更多
关键词 时间分数burgers方程 多重网格法 通量限制器
下载PDF
时空分数阶扩散波动方程的初值识别问题
9
作者 杨帆 曹英 李晓晓 《数学物理学报(A辑)》 CSCD 北大核心 2023年第2期377-398,共22页
研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例... 研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例说明Tikhonov正则化方法求解此类反问题非常有效. 展开更多
关键词 时空分数扩散波动方程 不适定问题 初值识别 TIKHONOV正则化方法 误差估计
下载PDF
一类广义不稳定时空分数阶薛定谔方程的近似解
10
作者 洪宝剑 《安徽大学学报(自然科学版)》 CAS 北大核心 2023年第1期17-23,共7页
基于求分数阶非线性偏微分方程近似解的迭代思想,通过将Laplace变换与同伦摄动法相结合,借助Adomian多项式展开和对非线性项进行修正,构造出合乎模型的近似解标准迭代式.研究一类广义不稳定时空分数阶薛定谔方程,得到该方程的各级近似... 基于求分数阶非线性偏微分方程近似解的迭代思想,通过将Laplace变换与同伦摄动法相结合,借助Adomian多项式展开和对非线性项进行修正,构造出合乎模型的近似解标准迭代式.研究一类广义不稳定时空分数阶薛定谔方程,得到该方程的各级近似解表达式,这些解在极限情形下可转化为精确解,通过误差分析及数值模拟将两者进行比较,发现其实部、虚部与模之间接近程度良好,结果表明该近似算法在求解常系数及变系数时空分数阶非线性薛定谔方程时规范有效. 展开更多
关键词 时空分数薛定谔方程 LAPLACE变换 ADOMIAN多项式 CAPUTO导数 近似解
下载PDF
一类非线性分数阶q-差分方程耦合系统边值问题解的存在性
11
作者 孟鑫 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第2期165-171,共7页
考虑了一类非线性Caputo型分数阶q-差分方程耦合系统边值问题。应用Leray-Schauder非线性抉择和Altman不动点定理证明该耦合系统边值问题解的存在性。最后通过例子说明了主要结论在实际问题中应用。
关键词 分数q-差分方程 耦合系统 边值问题 LERAY-SCHAUDER非线性抉择
下载PDF
分数阶耦合Burgers方程组的同伦摄动解 被引量:3
12
作者 彭春晓 袁凤连 王艳 《数学理论与应用》 2014年第4期71-75,共5页
本文利用同伦摄动法求关于时间Burgers方程组的二阶近似解,为了说明此方法的有效性我们利用Maple 14软件作出了整数阶耦合Burgers方程组的近似解和精确解的图像.结果表明此方法计算量小,避免了对系数的复杂讨论过程并且得出的近似解精... 本文利用同伦摄动法求关于时间Burgers方程组的二阶近似解,为了说明此方法的有效性我们利用Maple 14软件作出了整数阶耦合Burgers方程组的近似解和精确解的图像.结果表明此方法计算量小,避免了对系数的复杂讨论过程并且得出的近似解精确度较高. 展开更多
关键词 同伦摄动法 分数耦合burgers方程
下载PDF
时空耦合谱元方法求解一维Burgers方程 被引量:4
13
作者 王亚洲 秦国良 +1 位作者 和文强 包振忠 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第1期45-50,共6页
针对Burgers方程在空间离散格式与时间离散格式方面的精度匹配问题,提出了一种时空耦合谱元方法,求解了一维Burgers方程。求解时在时间及空间方向同时采用了谱元方法离散方程,推导了求解过程,比较了空间方向采用谱元离散结合时间方向分... 针对Burgers方程在空间离散格式与时间离散格式方面的精度匹配问题,提出了一种时空耦合谱元方法,求解了一维Burgers方程。求解时在时间及空间方向同时采用了谱元方法离散方程,推导了求解过程,比较了空间方向采用谱元离散结合时间方向分别采用向后欧拉方法、四阶Runge-Kutta方法和四阶Adams-Bashforth方法的数值精度以及时空匹配特性,研究了时间方向网格单元数及插值节点数对时空耦合谱元方法数值精度的影响。研究显示:时空耦合谱元方法能够求解Burgers方程且与传统的时间差分方法相比能够获得更高的数值精度;随着空间方向单元内插值阶数的不断增大,时空耦合谱元方法的数值精度不断提高,且保留了指数阶收敛的特点,具有较好的时空匹配特性;当空间网格划分方式固定时,时间方向上增加单元数或单元内插值阶数,对数值精度提高影响不大,这一结论与相关研究结果一致。研究内容对引入与空间谱元方法精度相匹配的时间离散格式具有指导意义。 展开更多
关键词 时空耦合 数值精度 谱元方法 burgers方程
下载PDF
一类非线性Caputo型分数阶微分方程耦合系统解的存在性和稳定性
14
作者 于洋 葛琦 《黑龙江大学自然科学学报》 2023年第5期511-522,共12页
研究一类非线性Caputo型分数阶微分方程耦合系统的边值问题。首先,将方程转化为等价的积分方程;其次,利用Leray-Schauder抉择和Banach压缩映像原理讨论该边值问题解的存在性和唯一性的充分条件;最后,分析该耦合系统的Ulam-Hyers、Ulam-H... 研究一类非线性Caputo型分数阶微分方程耦合系统的边值问题。首先,将方程转化为等价的积分方程;其次,利用Leray-Schauder抉择和Banach压缩映像原理讨论该边值问题解的存在性和唯一性的充分条件;最后,分析该耦合系统的Ulam-Hyers、Ulam-Hyers-Rassias和Ulam-Hyers-Mittag-Leffer稳定性。 展开更多
关键词 Caputo型分数微分方程 Leray-Schauder抉择 Banach压缩映像原理 耦合系统 稳定性
下载PDF
分数阶Burgers方程的有限元计算(英文) 被引量:1
15
作者 吴小伴 曾凡海 《应用数学与计算数学学报》 2012年第2期160-175,共16页
建立了一维和二维分数阶Burgers方程的有限元格式.时间分数阶导数使用L1方法离散,空间方向使用有限元方法离散.通过选择合适的基函数,将离散后的方程转化成一个非线性代数方程组,并应用牛顿迭代方法求解.数值实验显示出了方法的有效性.
关键词 分数burgers方程 CAPUTO导数 Riemman-Liouville导数 有限元方法 牛顿法
下载PDF
一类空间分数阶Burgers方程守恒型差分方法 被引量:1
16
作者 胡婷 傅毛里 《应用数学进展》 2022年第1期219-223,共5页
本文采用守恒型差分方法求解一类空间分数阶Buegers方程,其中时间方向和空间方向分别采用Crank-Nicolson格式和有限差分法离散。实验结果表明,该方法在时间和空间上的收敛速度都为二阶。
关键词 空间分数burgers方程 守恒型差分方法 CRANK-NICOLSON格式
下载PDF
考虑时空相关的分数阶对流—弥散方程及其解 被引量:9
17
作者 常福宣 吴吉春 +1 位作者 薛禹群 戴水汉 《水动力学研究与进展(A辑)》 CSCD 北大核心 2005年第2期233-240,共8页
本文在考虑弥散过程的时空相关性的基础上,用非局域性的处理方法,将二阶对流—弥散方程进行推广得到了分数阶的对流—弥散方程,方程中弥散项和对时间的导数被分数阶导数所代替。此方程的柯西问题的格林函数解是一分数稳定分布密度函数... 本文在考虑弥散过程的时空相关性的基础上,用非局域性的处理方法,将二阶对流—弥散方程进行推广得到了分数阶的对流—弥散方程,方程中弥散项和对时间的导数被分数阶导数所代替。此方程的柯西问题的格林函数解是一分数稳定分布密度函数。由方程的稳定分布密度函数解说明了局域等效弥散系数与弥散过程有关,得出了等效弥散系数与运移尺度有关,是运移距离的幂函数的结论。这一结论从理论上解释了弥散系数的尺度效应。最后,用一实验的实测数据对所得结果进行检验,检验结果很好地说明了弥散过程中的偏态特征和“拖尾”现象,而传统二阶对流—弥散方程的高斯分布解却不能解释。因此,用分数阶的对流—弥散方程比二阶对流—弥散方程能更好的描述溶质在多孔介质中的弥散行为。 展开更多
关键词 分数对流-弥散方程 分数微积分 时空相关性 等效弥散系数
下载PDF
分数阶对偶Burger方程的精确解 被引量:5
18
作者 闫立梅 刘艳芹 尹秀玲 《计算机工程与应用》 CSCD 北大核心 2016年第10期6-8,共3页
将分数阶复变换方法和tanh函数方法相结合,得到了一种用来求解时-空分数阶非线性微分方程精确解的复变换-tanh函数方法。借助于软件Mathematica的符号计算功能,使用该方法求解了分数阶对偶Burger方程,得到了分数阶对偶Burger方程的新的... 将分数阶复变换方法和tanh函数方法相结合,得到了一种用来求解时-空分数阶非线性微分方程精确解的复变换-tanh函数方法。借助于软件Mathematica的符号计算功能,使用该方法求解了分数阶对偶Burger方程,得到了分数阶对偶Burger方程的新的精确解。 展开更多
关键词 复变换-tanh函数方法 修正Riemann-Liouville导数 时空分数对偶burger方程
下载PDF
一类分数阶微分方程耦合系统边值问题解的存在性 被引量:7
19
作者 薛益民 苏有慧 +1 位作者 刘洁 苏莹 《徐州工程学院学报(自然科学版)》 CAS 2018年第1期41-47,共7页
文章研究一类非线性Riemann-Liouville型分数阶微分方程耦合系统解的存在性.利用格林函数的性质和Guo-Krasnosel'skii's不动点定理,得到该耦合系统解存在性的充分条件.
关键词 分数微分方程 GREEN函数 耦合系统 不动点定理
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部