This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external ...This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.展开更多
The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,...The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,the turbulence generated by blade passage includes the periodic components and the random turbulent ones.Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison.The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy.The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained.In the impeller region,the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one.The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared.TRPIV was used to record the sequence of instantaneous velocity in the impeller stream.The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices.The slope of the energy spectrum was approximately-5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank.From the power spectral density(PSD) ,one peak existed evidently,which was located at f0(blade passage frequency) generated by the blade passage.展开更多
Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen ...Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen under different land uses in a small watershed (12.10 km^2) in the hilly area of purple soil at the upper reaches of the Yangtze River in southwestern China were investigated by using conventional statistics, geostatistics, and a geographical information system in order to provide information for land management and control of environmental issues. A total of 552 soil samples (o to 15 cm) from 276 sites within the watershed were collected in April and August of 2o11, and analyzed for soil total nitrogen (STN) and nitrate nitrogen (NO3-N). We compared spatial variations of STN and NO3-N under different land uses as well as the temporal variations in April (dry season) and August (rainy season). Results showed that STN contents were deeply affected by land-use types; median STN values ranged from 0.94to 1.27g.kg-I, and STN contents decreased in the following order: paddy field 〉 foresfland 〉 sloping cropland. No significant difference was found for STN contents between April and August under the same land use. However, NO3- N contents were 23.26, 10.58, and 26.19 mg·kg^-1 in April, and 1.34, 8.51, and 3.00 mg·kg^-1 in August for the paddy field, sloping cropland and forestland, respectively. Nugget ratios for STN indicatedmoderate spatial dependence in the paddy field and sloping cropland, and a strong spatial dependence in forestland. The processes of nitrogen movement, transformation, absorption of plant were deeply influenced by land use types; as a result, great changes of soil nitrogen levels at spatial and temporal scales were demonstrated in the studied watershed.展开更多
Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods...Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.展开更多
Soil biogenic NO emission is one of the most important sources of atmospheric nitrogen oxides(NOx) worldwide. However, the estimation of soil source, especially in arid areas presents large uncertainties because of th...Soil biogenic NO emission is one of the most important sources of atmospheric nitrogen oxides(NOx) worldwide. However, the estimation of soil source, especially in arid areas presents large uncertainties because of the substantial lack of measurements. In this study, we selected the Ruoqiang oases on the southeastern edge of the Taklimakan Desert, China as the study area and applied Ozone Monitoring Instrument(OMI) NO2 retrievals(DOMINO v2.0, 2005–2011) to investigate the spatial distribution and seasonal variations in tropospheric NO2 vertical column density(VCD). High NO2 VCDs were observed over the oases(farmlands and natural vegetation), with the highest value obtained during summer, and lowest during winter. Pulses were observed during spring. We conducted in-situ measurements in June 2011 in Milan oasis and employed ground-based multi-axis differential optical absorption spectroscopy(MAX-DOAS) instruments to validate satellite NO2 retrievals. The findings are as follows: 1) in the study area soil biogenic NO emission is the dominant source of tropospheric NO2; 2) oases(farmlands) are hotspots of tropospheric NO2, and a higher increase in tropospheric NO2 is found in oases from winter to summer; and 3) enhancement of soil biogenic NO emission due to soil managements is predictable. Given the rapid agricultural development in the southern Uygur Autonomous Region of Xinjiang, researches on soil biogenic NO emission and increase in tropospheric NOx should be given more importance.展开更多
In this paper, we use the daily ranges of the vertical magnetic intensity of approximately 76 geomagnetic stations from January 1, 2008 to December 31, 2010 to analyze the spatial and temporal characteristics of Z ran...In this paper, we use the daily ranges of the vertical magnetic intensity of approximately 76 geomagnetic stations from January 1, 2008 to December 31, 2010 to analyze the spatial and temporal characteristics of Z ranges. The results are summarized as follows: (1) Temporally, we use regressive analysis and FFT analysis to analyze the data. The results show that the Z component daily ranges of all stations have an obvious cyclical variation, the computed Fourier spectra of all data sets have clearly resolved the required periodicities in the data, in the form of distinct peaks at days 365, 183, 22, and 73, and the power spectra of day 365 is the highest in all periods. (2) In terms of spatial variation, the daily ranges show nonlinear variation with latitude in China. The results show the existence of a point of inflexion (maximal value point) nearby at about 25°N, the daily ranges of Z rise from 15°~25°N and have a good linear decrease variation along with 25°~50°N. (3) Compared with the spatial and temporal variations of Z daily ranges with the Sq current inversion, we found that the spatial and temporal characteristics of Z ranges are decided mainly by the spatio-temporal evolution of the Sq current system. (4) If the latitudes of the maximum amplitudes of variation of the vertical component in the geomagnetic quiet days are roughly taken as the latitudes corresponding to the foci of Sq overhead current system, we can see that these latitudes of foci become higher in summer, are lowest in winter and highest during Equinoxes, displaying conspicuous monthly and daily variations. For two successive geomagnetic quiet days, the latitudes of foci may vary ten degrees.展开更多
The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled so...The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.展开更多
The Weihe River Basin has a significant number of tributaries and a delicate ecological environment.Understanding the spatial and temporal evolution and determinants of landscape ecological risk in the Weihe River Bas...The Weihe River Basin has a significant number of tributaries and a delicate ecological environment.Understanding the spatial and temporal evolution and determinants of landscape ecological risk in the Weihe River Basin(WRB)can improve the scientific protection and development of its watershed ecosystems.This study is based on land use statistics from the WRB for a 30-year period represented by 1990,2000,2010,and 2020.An initial model for the assessment of landscaping ecological hazards was created using the software that was also used to generate the landscape ecological risk index,such as ArcGIS 10.4 and Fragstats 4.2-64.Next,the spatial and temporal evolution of landscape ecological risk in the vicinity of the study area was characterized by the trajectory of the center of gravity migration and the spatial autocorrelation of GeoDa.Finally,Geodetector was used to analyze ecological risk drivers in the landscapes.According to the findings,the high-risk and relatively high-risk regions are steadily expanding,while the low-risk and relatively low-risk areas dominate the ecological risk landscape in the WRB.Within the Weihe River Basin,Xianyang and Xi'an are the areas to which the high-risk centers of gravity are migrating.Positive spatial correlations were found between the landscape ecological hazards in the study area,most prominently in the form of high-high and low-low aggregations.The primary drivers are the interplay between the GDP component,temperature,and elevation as a single factor.展开更多
Here,we quantitatively determine temporal and spatial distribution characteristics of main grain crops in the West Liaohe River basin,Inner Mongolia,China,from 2000 to 2010 based on MODIS remote sensing data and NDVI ...Here,we quantitatively determine temporal and spatial distribution characteristics of main grain crops in the West Liaohe River basin,Inner Mongolia,China,from 2000 to 2010 based on MODIS remote sensing data and NDVI time series information for the years 2000,2005 and 2010.Phenological calendars and a decisionmaking tree extraction model were also used to obtain spatial distribution information of spring maize,spring wheat and soybean.We found that in 2010,the sown area of the main grain crops in the West Liaohe River basin was 11 965.08km2,of which,the sown area for spring maize accounted for 92.28%and was concentrated in the lower reaches of the region.Spring wheat accounted for 3.14% and was mainly in the middle reaches.Soybean accounted for 4.58% and was predominantly in the upper reaches.From 2000 to 2005,the sown area of these grain crops in the West Liaohe River basin grew by 29.77%,mainly in the lower reaches: spring maize grew by 38.99%,spring wheat by 39.04% and soybean by 21.27%.From 2005 to 2010,growth in the sown area of these crops was slow(5.18% growth) and mainly in the lower reaches of the basin.The sown area of spring maize increased,but decreased for both spring wheat and soybean.展开更多
The temporal behaviour of a flow separation in the hub-suction side comer of a transonic diffuser is studied thanks to unsteady numerical simulations based on the phase-lagged approach. The validity of the numerical r...The temporal behaviour of a flow separation in the hub-suction side comer of a transonic diffuser is studied thanks to unsteady numerical simulations based on the phase-lagged approach. The validity of the numerical re- sults is confn'med by comparison with experimental unsteady pressure measurements. An analysis of the instan- taneous skin-friction pattern and particles trajectories is presented. It highlights the topology of the separation and its temporal behaviour. The major result is that, despite of a highly time-dependent core flow, the separation is found to be a "fixed unsteady separation" characterized by a fixed location of the main saddle of the separation but an extent of the stall region modulated by the pressure waves induced by the impeller-diffuser interaction.展开更多
文摘This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.
基金Supported by the National Natural Science Foundation of China(20776008 20821004 20990224) the National Basic Research Program of China(2007CB714300)
文摘The turbulence structure in the stirred tank with a deep hollow blade(semi-ellispe) disc turbine(HEDT) was investigated by using time-resolved particle image velocimetry(TRPIV) and traditional PIV.In the stirred tank,the turbulence generated by blade passage includes the periodic components and the random turbulent ones.Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison.The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy.The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained.In the impeller region,the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one.The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared.TRPIV was used to record the sequence of instantaneous velocity in the impeller stream.The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices.The slope of the energy spectrum was approximately-5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank.From the power spectral density(PSD) ,one peak existed evidently,which was located at f0(blade passage frequency) generated by the blade passage.
基金this project was provided by the Natural Science Foundation of China (Grant No.41271321)the National Key Basic Research Program of China (Grant no. 2012CB417101)
文摘Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen under different land uses in a small watershed (12.10 km^2) in the hilly area of purple soil at the upper reaches of the Yangtze River in southwestern China were investigated by using conventional statistics, geostatistics, and a geographical information system in order to provide information for land management and control of environmental issues. A total of 552 soil samples (o to 15 cm) from 276 sites within the watershed were collected in April and August of 2o11, and analyzed for soil total nitrogen (STN) and nitrate nitrogen (NO3-N). We compared spatial variations of STN and NO3-N under different land uses as well as the temporal variations in April (dry season) and August (rainy season). Results showed that STN contents were deeply affected by land-use types; median STN values ranged from 0.94to 1.27g.kg-I, and STN contents decreased in the following order: paddy field 〉 foresfland 〉 sloping cropland. No significant difference was found for STN contents between April and August under the same land use. However, NO3- N contents were 23.26, 10.58, and 26.19 mg·kg^-1 in April, and 1.34, 8.51, and 3.00 mg·kg^-1 in August for the paddy field, sloping cropland and forestland, respectively. Nugget ratios for STN indicatedmoderate spatial dependence in the paddy field and sloping cropland, and a strong spatial dependence in forestland. The processes of nitrogen movement, transformation, absorption of plant were deeply influenced by land use types; as a result, great changes of soil nitrogen levels at spatial and temporal scales were demonstrated in the studied watershed.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 41401078, 91025011, 41222001)National Basic Research Program of China (2013CBA01806)
文摘Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.
基金Under the auspices of German Research Foundation and Max Planck Society(No.MA 4798/1-1)National Natural Science Foundation of China(No.31070384)
文摘Soil biogenic NO emission is one of the most important sources of atmospheric nitrogen oxides(NOx) worldwide. However, the estimation of soil source, especially in arid areas presents large uncertainties because of the substantial lack of measurements. In this study, we selected the Ruoqiang oases on the southeastern edge of the Taklimakan Desert, China as the study area and applied Ozone Monitoring Instrument(OMI) NO2 retrievals(DOMINO v2.0, 2005–2011) to investigate the spatial distribution and seasonal variations in tropospheric NO2 vertical column density(VCD). High NO2 VCDs were observed over the oases(farmlands and natural vegetation), with the highest value obtained during summer, and lowest during winter. Pulses were observed during spring. We conducted in-situ measurements in June 2011 in Milan oasis and employed ground-based multi-axis differential optical absorption spectroscopy(MAX-DOAS) instruments to validate satellite NO2 retrievals. The findings are as follows: 1) in the study area soil biogenic NO emission is the dominant source of tropospheric NO2; 2) oases(farmlands) are hotspots of tropospheric NO2, and a higher increase in tropospheric NO2 is found in oases from winter to summer; and 3) enhancement of soil biogenic NO emission due to soil managements is predictable. Given the rapid agricultural development in the southern Uygur Autonomous Region of Xinjiang, researches on soil biogenic NO emission and increase in tropospheric NOx should be given more importance.
基金supported by the special fundamental research fund of Institute of Geophysics,CEA for Central Public Welfare Research Institutes(DQJB11C10)the fund for the Task of Tracing Earthquake Trend of China Earthquake Administration(Grant No.2010020705)
文摘In this paper, we use the daily ranges of the vertical magnetic intensity of approximately 76 geomagnetic stations from January 1, 2008 to December 31, 2010 to analyze the spatial and temporal characteristics of Z ranges. The results are summarized as follows: (1) Temporally, we use regressive analysis and FFT analysis to analyze the data. The results show that the Z component daily ranges of all stations have an obvious cyclical variation, the computed Fourier spectra of all data sets have clearly resolved the required periodicities in the data, in the form of distinct peaks at days 365, 183, 22, and 73, and the power spectra of day 365 is the highest in all periods. (2) In terms of spatial variation, the daily ranges show nonlinear variation with latitude in China. The results show the existence of a point of inflexion (maximal value point) nearby at about 25°N, the daily ranges of Z rise from 15°~25°N and have a good linear decrease variation along with 25°~50°N. (3) Compared with the spatial and temporal variations of Z daily ranges with the Sq current inversion, we found that the spatial and temporal characteristics of Z ranges are decided mainly by the spatio-temporal evolution of the Sq current system. (4) If the latitudes of the maximum amplitudes of variation of the vertical component in the geomagnetic quiet days are roughly taken as the latitudes corresponding to the foci of Sq overhead current system, we can see that these latitudes of foci become higher in summer, are lowest in winter and highest during Equinoxes, displaying conspicuous monthly and daily variations. For two successive geomagnetic quiet days, the latitudes of foci may vary ten degrees.
基金supported by the National Basic Research Program of China (973 Program,2012CB956202)the National Key Technology R&D Program of China(2012BAC22B04)+1 种基金the National Natural Science Foundation of China (41105048)the Special Fund for Meteorological scientific Research in the Public Interest (GYHY201106028)
文摘The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.
基金The Soft Science Research Project of Henan Provincial Science and Technology Department(212400410023)The General Project of Henan University Humanities and Social Science Research(2021-ZZJH-159).
文摘The Weihe River Basin has a significant number of tributaries and a delicate ecological environment.Understanding the spatial and temporal evolution and determinants of landscape ecological risk in the Weihe River Basin(WRB)can improve the scientific protection and development of its watershed ecosystems.This study is based on land use statistics from the WRB for a 30-year period represented by 1990,2000,2010,and 2020.An initial model for the assessment of landscaping ecological hazards was created using the software that was also used to generate the landscape ecological risk index,such as ArcGIS 10.4 and Fragstats 4.2-64.Next,the spatial and temporal evolution of landscape ecological risk in the vicinity of the study area was characterized by the trajectory of the center of gravity migration and the spatial autocorrelation of GeoDa.Finally,Geodetector was used to analyze ecological risk drivers in the landscapes.According to the findings,the high-risk and relatively high-risk regions are steadily expanding,while the low-risk and relatively low-risk areas dominate the ecological risk landscape in the WRB.Within the Weihe River Basin,Xianyang and Xi'an are the areas to which the high-risk centers of gravity are migrating.Positive spatial correlations were found between the landscape ecological hazards in the study area,most prominently in the form of high-high and low-low aggregations.The primary drivers are the interplay between the GDP component,temperature,and elevation as a single factor.
基金National Natural Science Foundation of China(41271541)
文摘Here,we quantitatively determine temporal and spatial distribution characteristics of main grain crops in the West Liaohe River basin,Inner Mongolia,China,from 2000 to 2010 based on MODIS remote sensing data and NDVI time series information for the years 2000,2005 and 2010.Phenological calendars and a decisionmaking tree extraction model were also used to obtain spatial distribution information of spring maize,spring wheat and soybean.We found that in 2010,the sown area of the main grain crops in the West Liaohe River basin was 11 965.08km2,of which,the sown area for spring maize accounted for 92.28%and was concentrated in the lower reaches of the region.Spring wheat accounted for 3.14% and was mainly in the middle reaches.Soybean accounted for 4.58% and was predominantly in the upper reaches.From 2000 to 2005,the sown area of these grain crops in the West Liaohe River basin grew by 29.77%,mainly in the lower reaches: spring maize grew by 38.99%,spring wheat by 39.04% and soybean by 21.27%.From 2005 to 2010,growth in the sown area of these crops was slow(5.18% growth) and mainly in the lower reaches of the basin.The sown area of spring maize increased,but decreased for both spring wheat and soybean.
文摘The temporal behaviour of a flow separation in the hub-suction side comer of a transonic diffuser is studied thanks to unsteady numerical simulations based on the phase-lagged approach. The validity of the numerical re- sults is confn'med by comparison with experimental unsteady pressure measurements. An analysis of the instan- taneous skin-friction pattern and particles trajectories is presented. It highlights the topology of the separation and its temporal behaviour. The major result is that, despite of a highly time-dependent core flow, the separation is found to be a "fixed unsteady separation" characterized by a fixed location of the main saddle of the separation but an extent of the stall region modulated by the pressure waves induced by the impeller-diffuser interaction.