期刊文献+
共找到5,560篇文章
< 1 2 250 >
每页显示 20 50 100
基于ARIMA时间序列模型的异常点检测——以校园智能水表用水数据为例
1
作者 陈禹默 《信息与电脑》 2025年第5期147-149,共3页
校园用水数据,既有趋势性又有季节性。为了准确地对智能水表收集的用水数据进行异常点分析,从而检测预估管网漏损问题,研究对用水数据进行了相关检验,并选择了合适的自回归差分移动平均模型(Autoregressive Integrated Moving Average M... 校园用水数据,既有趋势性又有季节性。为了准确地对智能水表收集的用水数据进行异常点分析,从而检测预估管网漏损问题,研究对用水数据进行了相关检验,并选择了合适的自回归差分移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)模型。基于Chen-Liu迭代算法,研究利用R软件进行编程,成功识别了用水数据中的异常点位置、类型、异常效应的大小,以及调整后的时间序列等,由此预估管网漏损可能出现的日期和位置。研究发现,基于ARIMA时间序列模型对用水数据进行异常点的检测较为准确,且输出的异常点类型可以区分异常点是人为因素造成还是由管网漏损问题造成,进而预估管网漏损问题,这为供水行业漏损管理模式提供了一种新的方向。 展开更多
关键词 异常点 管网漏损 arima时间序列模型
下载PDF
基于ARIMA-LSTM模型的GNSS高程时间序列预测
2
作者 胡增明 李晓强 +1 位作者 黄明翔 张弯 《黄河水利职业技术学院学报》 2025年第2期50-54,共5页
针对ARIMA和LSTM单一模型预测GNSS高程时间序列存在精度较低的问题,提出用ARIMA-LSTM混合模型预测GNSS高程时间序列。分析了ARIMA-LSTM模型的基本原理,探讨了模型的建立与数据处理方法,并通过实验对其预测结果进行验证。实验结果表明,在... 针对ARIMA和LSTM单一模型预测GNSS高程时间序列存在精度较低的问题,提出用ARIMA-LSTM混合模型预测GNSS高程时间序列。分析了ARIMA-LSTM模型的基本原理,探讨了模型的建立与数据处理方法,并通过实验对其预测结果进行验证。实验结果表明,在GNSS高程时间序列预测中,相比于ARIMA和LSTM任何一个单一模型,ARIMA-LSTM模型表现出更高的预测精度和鲁棒性。 展开更多
关键词 GNSS高程时间序列 arima模型 LSTM模型 arima-LSTM模型 实验验证 预测精度 鲁棒性
下载PDF
基于“STL+ARIMA”模型的电力物资需求时间序列预测
3
作者 李英龙 林咪咪 +2 位作者 倪颖婷 姚可筠 李云峰 《互联网周刊》 2025年第2期33-35,共3页
随着电力行业的快速发展,物资需求的精确预测成为提高企业运营效率和降低成本的关键因素。本文基于国网福建省电力有限公司厦门供电公司2021年至2023年的部分物资出库数据,研究了多种时间序列预测模型对电力物资需求的预测能力。本文选... 随着电力行业的快速发展,物资需求的精确预测成为提高企业运营效率和降低成本的关键因素。本文基于国网福建省电力有限公司厦门供电公司2021年至2023年的部分物资出库数据,研究了多种时间序列预测模型对电力物资需求的预测能力。本文选取了ARIMA、SARIMA、LSTM、KNN、ETS、“STL+ARIMA”等6种模型,并通过MAE(平均绝对误差)、MSE(均方误差)、R-squared(决定系数)等多项评价指标对其预测精度进行了比较。实验结果表明,“STL+ARIMA”模型在所有模型中表现最佳,能够有效捕捉数据中的季节性波动和趋势变化,预测精度远超其他模型。本文为电力企业物资需求预测提供了高效且精确的模型选择方案,有助于优化物资供应链管理,降低成本,并提升整体运营效率。 展开更多
关键词 电力物资需求 时间序列预测 “STL+arima模型 Sarima模型 LSTM神经网络
下载PDF
基于BPNN的混合ARIMA时间序列数据预测模型
4
作者 徐海洋 邓文文 李彤 《信息技术与信息化》 2025年第1期102-105,共4页
传统的时间序列预测模型具有较好的稳定性和可解释性,但也存在一些问题,一方面是对于非线性时间序列的适应能力不足,另一方面是对于具有季节性变化的时间序列的适应能力不足,需要通过差分操作消除时间序列的趋势和季节性,但这种方法存... 传统的时间序列预测模型具有较好的稳定性和可解释性,但也存在一些问题,一方面是对于非线性时间序列的适应能力不足,另一方面是对于具有季节性变化的时间序列的适应能力不足,需要通过差分操作消除时间序列的趋势和季节性,但这种方法存在一定的局限性。针对以上问题,文章研究并提出了基于ARIMA/BPNN的时间序列数据混合预测模型,对数据进行短期预测,使用中国的进口总值当期值数据集来评估所提出的模型。所提出的模型联合用于线性和非线性模型,旨在捕获时间序列数据中的不同关系模式。混合预测模型能够帮助用户更好地理解市场和业务需求,从而做出更准确的决策,减少决策带来的风险和成本,提高资源利用效率。 展开更多
关键词 深度学习 卷积神经网络 时间序列数据 短期预测 预测模型
下载PDF
基于时间序列数据驱动的在线学业预测机理模型研究
5
作者 姜强 刘盼 +2 位作者 倪静 郝美霞 赵蔚 《现代远距离教育》 2025年第1期58-67,共10页
在线学业预测是教育领域中的关键环节,是实现教育数字化和个性化教学的重要途径。当前,在线学业预测方法多依赖数据的静态特征,动态捕捉学生的在线学习行为是确保学业预测精准度和适用性的迫切要求。本研究以数据驱动和人工智能技术为核... 在线学业预测是教育领域中的关键环节,是实现教育数字化和个性化教学的重要途径。当前,在线学业预测方法多依赖数据的静态特征,动态捕捉学生的在线学习行为是确保学业预测精准度和适用性的迫切要求。本研究以数据驱动和人工智能技术为核心,提出在线学业预测框架,以视频点击流时间序列数据为基础,聚焦在线学业预测关键特征,利用长短期记忆网络(LSTM)构建在线学业预测机理模型。此外,应用预测模型开展实践,验证在线学业预测模型效果,利用学习分析仪表盘可视化反馈结果,实现个性化学习和精细化教学。研究表明,基于时间序列数据的在线学业预测机理模型能够精准追踪学生的学业表现,并在实际应用中表现出优异的预测精度和稳定性。研究成果在推动教育数字化转型、深化个性化教学实践以及提升教育决策精准性等方面提供了重要的理论和实践依据。 展开更多
关键词 时间序列数据 在线学习 学业预测 机理模型
下载PDF
功率谱密度引导下的时间序列预测模型
6
作者 梁立河 崔锦莹 +3 位作者 张雪松 高妮玲 赵涓涓 强彦 《计算机工程与设计》 北大核心 2025年第4期1087-1095,共9页
为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序... 为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序列的长短期特征、实现未来“先验”信息的有效传递和降低异常数据对序列预测的负面影响,提高模型的预测准确性。在3个数据集上进行的实验验证了PSDformer模型的可行性和有效性。 展开更多
关键词 时间序列预测 功率谱密度 编解码器模型 多粒度能量选择 注意力知识引导 序列去噪分解 长短期特征 “先验”信息
下载PDF
时间序列分类模型的集成对抗训练防御方法
7
作者 王璐瑶 曹渊 +3 位作者 刘博涵 曾恩 刘坤 夏元清 《自动化学报》 北大核心 2025年第1期144-160,共17页
深度学习是解决时间序列分类(Time series classification,TSC)问题的主要途径之一.然而,基于深度学习的TSC模型易受到对抗样本攻击,从而导致模型分类准确率大幅度降低.为此,研究了TSC模型的对抗攻击防御问题,设计了集成对抗训练(Advers... 深度学习是解决时间序列分类(Time series classification,TSC)问题的主要途径之一.然而,基于深度学习的TSC模型易受到对抗样本攻击,从而导致模型分类准确率大幅度降低.为此,研究了TSC模型的对抗攻击防御问题,设计了集成对抗训练(Adversarial training,AT)防御方法.首先,设计了一种针对TSC模型的集成对抗训练防御框架,通过多种TSC模型和攻击方式生成对抗样本,并用于训练目标模型.其次,在生成对抗样本的过程中,设计了基于Shapelets的局部扰动算法,并结合动量迭代的快速梯度符号法(Momentum iterative fast gradient sign method,MI-FGSM),实现了有效的白盒攻击.同时,使用知识蒸馏(Knowledge distillation,KD)和基于沃瑟斯坦距离的生成对抗网络(Wasserstein generative adversarial network,WGAN)设计了针对替代模型的黑盒对抗攻击方法,实现了攻击者对目标模型未知时的有效攻击.在此基础上,在对抗训练损失函数中添加Kullback-Leibler(KL)散度约束,进一步提升了模型鲁棒性.最后,在多变量时间序列分类数据集UEA上验证了所提方法的有效性. 展开更多
关键词 时间序列 对抗样本 对抗训练 模型鲁棒性
下载PDF
基于扩散模型的多元时间序列插补技术研究
8
作者 何飞扬 严华 《信息记录材料》 2025年第3期58-61,共4页
时间序列插补技术在交通、空气质量检测等领域应用广泛,可用于解决数据丢失等问题。目前,该领域的扩散模型仅仅使用观测值作为条件信息,缺乏对条件信息的利用。因此,本文提出一种新的条件扩散模型框架,即用于多元时间序列插补的循环条... 时间序列插补技术在交通、空气质量检测等领域应用广泛,可用于解决数据丢失等问题。目前,该领域的扩散模型仅仅使用观测值作为条件信息,缺乏对条件信息的利用。因此,本文提出一种新的条件扩散模型框架,即用于多元时间序列插补的循环条件扩散模型(recurrent conditional diffusion model,RCDM),通过观测值和新的条件信息共同学习条件分布,并针对多层次信息设计融合网络。结果表明,本文方法与传统方法、常见深度学习方法相比,RCDM在METR-LA数据集上取得了最佳结果,表明本文RCDM的有效性。 展开更多
关键词 多元时间序列 扩散模型 条件信息 数据丢失
下载PDF
结合高斯噪声的回声状态网络模型及其时间序列预测性能
9
作者 王梓鉴 赵慧 +1 位作者 郑明文 李鑫 《济南大学学报(自然科学版)》 北大核心 2025年第1期129-134,142,共7页
为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验... 为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验证和对比分析。结果表明,本文所提模型的预测效果优于回声状态网络模型、压缩感知回声状态网络模型和反向传播神经网络模型,股票收盘价预测、Logistic混沌序列预测的平均绝对误差均最小,分别为1.33×10^(-3)、5.21×10^(-4)。 展开更多
关键词 时间序列预测 回声状态网络模型 高斯噪声 储备池层
下载PDF
基于时间序列模型ARIMA的校园供水管网暗漏检测研究
10
作者 袁淑娟 《科学技术创新》 2024年第17期94-97,共4页
为了及时发现校园供水管网暗漏情况,减少水资源浪费和降低暗漏检测成本,在获取校园各区域水表数据的基础上,根据学校用水规律及特点,建立基于时间序列模型ARIMA的用水量预测模型,分析预测用水量与实际用水量之间的差异性,进而判断校园... 为了及时发现校园供水管网暗漏情况,减少水资源浪费和降低暗漏检测成本,在获取校园各区域水表数据的基础上,根据学校用水规律及特点,建立基于时间序列模型ARIMA的用水量预测模型,分析预测用水量与实际用水量之间的差异性,进而判断校园供水管网是否存在暗漏,构建校园供水管网暗漏检测模型。结果表明,基于时间序列模型ARIMA的校园供水管网暗漏检测模型判断正确率为80%,实际应用效果良好,可以作为校园供水管网暗漏检测的一种预警方法。此方法是基于水表数据的数据模型方法,省时省力省钱,并且可以拓展到其他场所使用。 展开更多
关键词 时间序列模型 暗漏检测 水量预测
下载PDF
基于时间序列分析模型的尾巨桉DH32-29木材含水率动态模型研究
11
作者 汤雷吼 林建国 韦添露 《农村科学实验》 2025年第3期169-171,共3页
为了更好地利用和加工尾巨桉DH32-29木材,了解和分析尾巨桉DH32-29采伐后水分含量的变化情况,该文以5年生尾巨桉DH32-29为研究对象,在广西壮族自治区国有派阳山林场采伐了符合条件的5年生尾巨桉无性系DH32-29林木40株,对采伐后的木材进... 为了更好地利用和加工尾巨桉DH32-29木材,了解和分析尾巨桉DH32-29采伐后水分含量的变化情况,该文以5年生尾巨桉DH32-29为研究对象,在广西壮族自治区国有派阳山林场采伐了符合条件的5年生尾巨桉无性系DH32-29林木40株,对采伐后的木材进行取样并使其自然干燥,并于2023年9月12日至2024年1月10日每间隔5 d调查1次木材含水率情况。对5年生尾巨桉无性系DH32-29木材样木的含水率均值应用时间序列进行分析,经平稳化处理、模型检验后,确定5年生尾巨桉无性系DH32-29在采伐后120 d内的含水率预测模型为Y_t=0.138-1.000×εt-j。经检验,模型的拟合优度R2为0.988,模型表现优秀,拟合效果好,具有较高的准确性和可信度。最后得出了5年生尾巨桉DH32-29无性系采伐后125~150 d的木材含水率。 展开更多
关键词 尾巨桉DH32-29 时间序列分析模型 木材含水率 动态模型
下载PDF
基于时间序列模型的短时交通流预测方法
12
作者 周原 《宁夏师范大学学报》 2025年第1期73-80,共8页
为给应急交通指挥方案的制定提供可靠的参考数据,提出一个基于时间序列模型的短时交通流预测方法.首先将环形线圈感应器埋设在道路之下,采集过往车辆的交通流数据,并实施错误数据处理和缺失数据填补处理.然后利用k-means算法实现交通流... 为给应急交通指挥方案的制定提供可靠的参考数据,提出一个基于时间序列模型的短时交通流预测方法.首先将环形线圈感应器埋设在道路之下,采集过往车辆的交通流数据,并实施错误数据处理和缺失数据填补处理.然后利用k-means算法实现交通流数据聚类,计算分割阈值,完成交通流数据离散化.最后用时间序列模型中的移动平均法构建预测模型,实现短时交通流预测.结果表明,该方法降低了预测误差,预测值与实测值更为接近,因此准确性更高. 展开更多
关键词 时间序列模型 交通流数据采集 预处理 离散化 移动平均法 交通流预测
下载PDF
我国快递业务收入的时间序列分析——基于ARIMA模型
13
作者 韩薇薇 《电子商务评论》 2024年第1期466-474,共9页
本研究选取2008年1月~2023年11月全国快递业务收入的月度数据为样本,采用时间序列检验方法对其进行了相关分析,然后根据数据特征建立了ARIMA乘法模型来拟合此时间序列。接着,我们用拟合模型来预测2022年3月和4月的全国快递业务收入,通... 本研究选取2008年1月~2023年11月全国快递业务收入的月度数据为样本,采用时间序列检验方法对其进行了相关分析,然后根据数据特征建立了ARIMA乘法模型来拟合此时间序列。接着,我们用拟合模型来预测2022年3月和4月的全国快递业务收入,通过分析2022年3月和2022年4月全国快递业务收入预测值和真实值的差值,得出突发事件对我国快递行业有着短期负向冲击作用的结论。其次,我们用2008年~2019年的数据对2020年的全国快递业务收入做了预测并且分析预测值和实际值之间的差距以判断2020年初突发事件对全国快递业务收入的影响。最后,我们用2008年~2022年的数据对2023年的数据做出预测,对比实际值和预测值的差距我们发现:快递收入很快恢复至突发事件发生之前水平并有所增长。这对于电商快递行业在遭遇不可抗力因素导致的业务影响时,如何在抵抗短期负面影响的同时也兼顾到未来长期发展具有一定的借鉴意义。 展开更多
关键词 快递业务收入 时间序列分析 arima模型
下载PDF
基于在线监测时间序列数据的水质预测模型研究进展
14
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
下载PDF
中国内地GPS坐标时间序列噪声模型特征及其对站点速率影响
15
作者 袁兴明 孙玉强 彭正斌 《导航定位学报》 CSCD 北大核心 2024年第2期94-101,共8页
为了进一步评估全球定位系统(GPS)时间序列噪声模型水平和垂直速率的大小,及其对误差的影响,选取中国内地227个GPS连续基准站2010—2020年南北、东西和垂直3个方向的坐标时间序列,采用6种噪声模型或噪声组合模型对其进行噪声分析。结果... 为了进一步评估全球定位系统(GPS)时间序列噪声模型水平和垂直速率的大小,及其对误差的影响,选取中国内地227个GPS连续基准站2010—2020年南北、东西和垂直3个方向的坐标时间序列,采用6种噪声模型或噪声组合模型对其进行噪声分析。结果表明,中国内地GPS坐标时间序列噪声模型存在多样性,且部分站点在不同方向的噪声模型也存在差异,主要以一阶高斯马尔可夫+随机漫步噪声(GGMWN)和闪烁噪声+白噪声(FNWN)为主;在100°E附近的GPS站点噪声特性差异最为显著;噪声模型与速率之间的关系分析表明噪声模型对水平向速率的大小和误差影响较小,在现实计算中可不考虑噪声对水平速度的影响,但对垂向速率的大小和误差影响显著;考虑噪声模型可有效提高垂向速率的精度,同时也可能会改变部分站点的垂向运动方向,所以在现实计算中须考虑噪声对垂向速率的影响。 展开更多
关键词 全球定位系统(GPS)连续站 坐标时间序列 噪声模型 站点速率
下载PDF
疾病监测时间序列预测模型应用进展
16
作者 刘天 赵婧 +1 位作者 吴杨 黄淑琼 《实用预防医学》 2024年第11期1404-1409,共6页
新型冠状病毒疫情后,如何利用疾病监测数据建立预测预警是疾病监测领域的重要研究课题。随着计算机技术的迅猛发展,近年来各类新兴时间序列模型快速增加,尚缺乏对各类疾病监测时间序列预测模型的概述。本研究对近年来国内外主要的疾病... 新型冠状病毒疫情后,如何利用疾病监测数据建立预测预警是疾病监测领域的重要研究课题。随着计算机技术的迅猛发展,近年来各类新兴时间序列模型快速增加,尚缺乏对各类疾病监测时间序列预测模型的概述。本研究对近年来国内外主要的疾病监测时间序列预测模型进行梳理,供读者了解各类疾病监测时间序列预测模型基本原理,种类,实现步骤以及模型评价指标;同时也介绍了常用的建模软件,为读者详细、全面地介绍了当前国内外疾病监测时间序列预测模型应用进展,为更好地建立预测预警模型提供重要参考。 展开更多
关键词 疾病监测 预测 时间序列 模型
原文传递
基于一类非线性时间序列模型的锂离子动力电池建模研究
17
作者 白书华 张志 +4 位作者 何柏青 邬磊 黄金亮 张文展 肖和 《当代化工研究》 CAS 2024年第10期167-169,共3页
伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非... 伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非线性特征,从而直接影响参数识别效果,进而影响模型精度。鉴于此,本文对锂离子动力电池进行了Hammerstein-ARMAX(Autoregressive MovingAverage with Extra Input)模型构建,并对模型参数的估计方法进行研究,旨在提高模型的准确性。实验结果表明了该方法的有效性。 展开更多
关键词 锂离子动力电池 非线性时间序列 Hammerstein-ARMAX模型 参数估计
下载PDF
ARIMA模型在广西壮族自治区GDP预测研究中的应用
18
作者 曾怡霏 石虹 《时代经贸》 2025年第1期129-133,共5页
GDP是一个地区经济实力的重要参考指标,通过预测和分析GDP,可以得知某地区在未来一段时间内经济运行的情况。本文建立ARIMA模型,对1960-2023年广西壮族自治区国内生产总值(GDP)进行拟合与预测。结果显示,模型ARIMA(2,2,2)的预测值与真... GDP是一个地区经济实力的重要参考指标,通过预测和分析GDP,可以得知某地区在未来一段时间内经济运行的情况。本文建立ARIMA模型,对1960-2023年广西壮族自治区国内生产总值(GDP)进行拟合与预测。结果显示,模型ARIMA(2,2,2)的预测值与真实值基本吻合,该模型具有良好的预测效果;在未来五年内,广西壮族自治区GDP年均增长率能够保持在4.35%左右,与过去五年相比略有下降。根据研究结果,本文提出建议,推动供给侧结构性改革、支持乡村振兴、加快基础设施建设、扩大消费。 展开更多
关键词 国内生产总值 arima模型 时间序列
下载PDF
环境卫生与医院感染的时间序列研究:基于广义相加模型(GAM) 被引量:2
19
作者 林凯 陈坤 +7 位作者 王建炳 范芳华 梁辉 陈芳 金凯玲 储文杰 陈伟国 单欢 《中国感染控制杂志》 CAS CSCD 北大核心 2024年第7期798-805,共8页
目的定量分析环境卫生对医院感染发生的影响。方法收集某三甲医院2018年1月—2022年12月医院感染与环境卫生学监测资料,采用时间序列的广义相加模型分析环境检出菌落形成单位(CFU)对医院感染发生的影响。结果单污染模型显示,医院感染与... 目的定量分析环境卫生对医院感染发生的影响。方法收集某三甲医院2018年1月—2022年12月医院感染与环境卫生学监测资料,采用时间序列的广义相加模型分析环境检出菌落形成单位(CFU)对医院感染发生的影响。结果单污染模型显示,医院感染与工作人员手细菌菌落数之间存在显著正相关性(β1=0.009,P=0.012),工作人员手月度平均菌落形成单位(MCFU/Dish)每升高1个四分位数间距(IQR),医院感染发生率增加13.28%(95%CI:2.82%~24.81%);亚组分析与滞后效应分析显示,工作人员手月度MCFU/Dish(卫生手消毒后)升高1个IQR,当月(lag0)医院感染超额风险(ER)为16.26%(95%CI:15.45%~17.09%)。多污染模型中,物体表面污染与医院感染的相关性同样具有统计学意义。结论医院环境卫生与医院感染之间存在显著相关性。 展开更多
关键词 医院感染 时间序列分析 广义相加模型 环境卫生 手卫生
下载PDF
基于时间序列的改进型永磁同步电机三矢量无模型预测电流控制策略
20
作者 肖强晖 张雨爽 +1 位作者 罗朝旭 程谆 《湖南电力》 2024年第5期29-36,共8页
针对永磁同步电机驱动系统传统的三矢量模型预测电流控制策略参数鲁棒性差的问题,提出一种基于时间序列的改进型三矢量无模型预测电流控制策略,以消除参数失配的影响,提高系统的鲁棒性。首先,建立时间序列数据驱动模型,将输入输出数据... 针对永磁同步电机驱动系统传统的三矢量模型预测电流控制策略参数鲁棒性差的问题,提出一种基于时间序列的改进型三矢量无模型预测电流控制策略,以消除参数失配的影响,提高系统的鲁棒性。首先,建立时间序列数据驱动模型,将输入输出数据拟合为离散传递函数,并结合递归最小二乘法在线估计模型待定系数,预测所需变量。此外,对矢量扇区进行重新分类,以优化三矢量组合的选择过程。引入矢量占空比直接计算方法,抑制电机参数入口对占空比计算环节的不确定性影响,进一步提高系统的鲁棒性。最后,仿真和实验结果表明,所提出的策略能有效提高模型参数的鲁棒性,dq轴电流纹波减小,电机参数变化引起的干扰得到有效抑制。 展开更多
关键词 永磁同步电机 模型预测控制 模型 时间序列 三矢量
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部