期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
使用GPU并行加速的星表检索算法 被引量:2
1
作者 李超 张利强 +1 位作者 吴佳泽 郑昌文 《宇航学报》 EI CAS CSCD 北大核心 2012年第5期584-589,共6页
提出一种基于GPU的恒星检索并行算法,解决大视场下星表检索在仿真应用中效率不高的问题。首先使用经纬度分区法将星表划分为星区存储,然后在可快速查询的分区星表上,提出构造球面三角形法精确求出探测视场覆盖的星区,以有效减小搜索范... 提出一种基于GPU的恒星检索并行算法,解决大视场下星表检索在仿真应用中效率不高的问题。首先使用经纬度分区法将星表划分为星区存储,然后在可快速查询的分区星表上,提出构造球面三角形法精确求出探测视场覆盖的星区,以有效减小搜索范围。最后,采用计算统一设备架构(CUDA)计算平台,将并行的视场内恒星检索过程放入GPU下进行并行加速。实验结果表明,与面向CPU的实现相比,所提算法获得数十倍的加速比,并且在大视场、宽星等域下将检索时间控制在毫秒级别,满足了实时仿真要求。 展开更多
关键词 通用处理机 星表检索 CUDA 并行加速 分区法
下载PDF
Retrieve Sea Surface Salinity Using Principal Component Regression Model Based on SMOS Satellite Data 被引量:5
2
作者 ZHAO Hong LI Changjun +2 位作者 LI Hongping LV Kebo ZHAO Qinghui 《Journal of Ocean University of China》 SCIE CAS 2016年第3期399-406,共8页
The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity fr... The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?–25?N, 105?–125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data. 展开更多
关键词 sea surface salinity retrieved algorithm SMOS principle component regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部