A method for fabricating arrays of microcapsules covalently immobilized onto chemically patterned substrates was developed.The core-shell microparticles with poly(allylamine hydrochloride)(PAH) as the outermost layer ...A method for fabricating arrays of microcapsules covalently immobilized onto chemically patterned substrates was developed.The core-shell microparticles with poly(allylamine hydrochloride)(PAH) as the outermost layer were obtained by layer-by-layer (LbL) assembly,which were further treated with glutaraldehyde to endow the particles with abundant aldehyde groups on their surfaces.The particles were then covalently coupled to the chemically patterned regions with amino groups created by microcontact printing (μCP).After dissolution of the core particles,arrays of the hollow microcapsules with unchanged structures were obtained.These arrays could stand rigorous environmental conditions of higher ionic strength,and lower and higher pH values.Thus,the technique could be possibly applied to exploiting chips of microcontainers or microreactors in sensing technology.展开更多
This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the b...This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.20434030 and 20774084)the National Basic Research Program(973)of China(No. 2005CB623902)the National Science Fund for Distinguished Young Scholars of China(No.50425311)
文摘A method for fabricating arrays of microcapsules covalently immobilized onto chemically patterned substrates was developed.The core-shell microparticles with poly(allylamine hydrochloride)(PAH) as the outermost layer were obtained by layer-by-layer (LbL) assembly,which were further treated with glutaraldehyde to endow the particles with abundant aldehyde groups on their surfaces.The particles were then covalently coupled to the chemically patterned regions with amino groups created by microcontact printing (μCP).After dissolution of the core particles,arrays of the hollow microcapsules with unchanged structures were obtained.These arrays could stand rigorous environmental conditions of higher ionic strength,and lower and higher pH values.Thus,the technique could be possibly applied to exploiting chips of microcontainers or microreactors in sensing technology.
文摘This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs.